
 Stiftung SIC – http://jce.iaik.tugraz.at 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Creating XML Signatures with Smart Cards 

Technical Article 28 March 2007 



 Stiftung SIC – http://jce.iaik.tugraz.at 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright © 2007 Stiftung Secure Information and Communication Technologies SIC 

Copyright © 2007 IAIK, Graz University of Technology 

Java™ and all Java-based marks are trademarks or registered trademarks of Sun 

Microsystems, Inc. in the U.S. and other countries 

 

All rights reserved. 



 Stiftung SIC – http://jce.iaik.tugraz.at 

Introduction 

More and more cryptographic applications use smart cards to secure keys. Saving these 

keys and performing the cryptographic operation directly on the card protects the keys all 

time. With the PKCS#11-Provider Add-On, it’s easy to develop applications that integrate 

smart cards. This article shows how to create XML signatures with XSECT using a smart 

card. 

In order to adapt a typical XML-Signature application only two changes are needed. First, 

the application has to select the signing key from the PKCS#11 key store. Second, the 

XSECT provider has to delegate the private-key operations to the PKCS#11 provider, 

which performs the actual signing on the smart card. 

Creation of the Signature 

In this section, we demonstrate how to create an XML signature from an XML file and save 

it in a separate file. 

The steps for creating an XML signature with a smart card are: 

1. Registration of the required providers 

2. Configuration of the delegation-provider in XSECT 

3. Selection of the signature key from the PKCS#11 key store 

4. Creation of an XML signature as usual 

The initial step is to register the needed providers. The providers required for this demo are 

the IAIK-JCE provider for basic cryptographic operations, the XSECT provider for XML 

signatures and the PKCS#11 provider for the smart card integration. Before adding the 

XSECT provider, we configure it to delegate the signing operation to the PKCS#11 

provider. 

 

Next, we select the signing key from the PKCS#11 key store. Note that the private key 

objects that we get from this key store do not contain the actual key material. They are only 

proxy objects. The key material never leaves the card. 

 

Now we can create an XML signature as usual with XSECT. In our example, we create a 

simple detached signature that contains the signing certificate in the KeyInfo element. 

KeyStore tokenKeyStore =  

pkcs11Provider_.getTokenManager().getKeyStore(); 

signatureKey_ = (PrivateKey) tokenKeyStore.getKey(keyAlias, null); 

Certificate[] certificateChain =  

tokenKeyStore.getCertificateChain(keyAlias); 

signingCertificate = (X509Certificate) certificateChain[0]; 

Security.addProvider(new IAIK()); 

pkcs11Provider_ = new IAIKPkcs11(); 

Security.addProvider(pkcs11Provider_); 

XSecProvider xsecProvider = new XSecProvider(); 

XSecProvider.setDelegationProvider("Signature.SHA1withRSA", 

pkcs11Provider.getName()); 

Security.addProvider(xsecProvider); 



 Stiftung SIC – http://jce.iaik.tugraz.at 

 

With the signature method SignatureMethod.RSA_SHA1, XSECT knows that it has to 

create a RSA signature with SHA-1 hashing. With the delegation feature, we specified that 

it should use the PKCS#11 provider if it wants to create a signature with the JCA algorithm 

name SHA1withRSA. The same mechanism works for other signature algorithms similarly. 

JCA algorithm name IAIK XSECT algorithm name  

Signature.SHA1withRSA SignatureMethod.RSA_SHA1  

Signature.SHA256withRSA XmldsigMore.SIGNATURE_RSA_SHA256  

Signature.SHA1withECDSA XmldsigMore.SIGNATURE_ECDSA_SHA1 

Validation of the Signature 

To validate the created XML signature no access to the smart card is needed, as the 

certificate was added to the signature. Therefore, the signature can be validated the same 

way as other XML signatures. A demo for the validation process can be downloaded below. 

Summary 

This article shows how to combine XML-Signature creation with XSECT and smart-card 

access with the PKCS#11 Provider. The example includes the signing certificate in the 

detached XML signature. 

XMLSignatureFactory fac = XMLSignatureFactory.getInstance("DOM"); 

Reference ref = fac.newReference( 

dataURL, fac.newDigestMethod(DigestMethod.SHA1, null)); 

 

CanonicalizationMethod canonicalizationMethod =  

fac.newCanonicalizationMethod( 

CanonicalizationMethod.INCLUSIVE_WITH_COMMENTS, 

(C14NMethodParameterSpec) null); 

SignatureMethod signatureMethod = fac.newSignatureMethod( 

SignatureMethod.RSA_SHA1, null); 

SignedInfo si = fac.newSignedInfo( 

canonicalizationMethod, signatureMethod, 

Collections.nCopies(1, ref)); 

 

KeyInfoFactory kif = fac.getKeyInfoFactory(); 

X509Data x509data = kif.newX509Data( 

Collections.nCopies(1, signingCertificate)); 

KeyInfo ki = kif.newKeyInfo(Collections.nCopies(1, x509data)); 

 

XMLSignature signature = fac.newXMLSignature(si, ki); 

 

DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance(); 

dbf.setNamespaceAware(true); 

doc = dbf.newDocumentBuilder().newDocument(); 

 

DOMSignContext signContext = new DOMSignContext( 

(Key) signatureKey_, doc_); 

signature.sign(signContext); 



 Stiftung SIC – http://jce.iaik.tugraz.at 

References 

1. IAIK JCE Documentation: 

http://javadoc.iaik.tugraz.at/iaik_jce/current/index.html 

2. IAIK XSECT Add-On Documentation: 

http://javadoc.iaik.tugraz.at/xsect/current/apidocs/xsect/index.html 

3. IAIK PKCS#11-Provider Documentation: 

http://javadoc.iaik.tugraz.at/pkcs11_provider/current/index.html 

4. Java SE 1.5.0 Documentation:  

http://java.sun.com/j2se/1.5.0/docs/api/  

5. Signature algorithm names:  

http://java.sun.com/javase/6/docs/technotes/guides/security/StandardNames.html#Signature 

http://javadoc.iaik.tugraz.at/xsect/current/apidocs/xsect/iaik/xml/crypto/XmldsigMore.html 

 


