
Signing JAR Files with IAIK-CMS
SIC/IAIK, Graz University of Technology

July 2011

Introduction
In this article, we show how to sign a JAR file using the IAIK-CMS library. The example
program provides its own classes for generating the manifest file (MANIFEST.MF),
signature info file (*.SF) and the signature file (*.RSA,*.DSA or *.ECDSA) inside the
archive. It can sign any JAR file. This is useful for applications that need to sign JAR
files programmatically and cannot access external tools like SUN's jarsigner tool ([3]).

We will start explaining how signing JAR files works in principle. Following, we provide
pieces of source code that show the core signing functionality that uses IAIK-CMS. The c
complete source code of the IAIK JAR signing tool is included in the customer version of
the IAIK-CMS toolkit.

The Process of JAR Signing
A JAR file is actually a ZIP file with some additional meta-files in a dedicated directory
inside the archive. Usually, this META-INF directory contains at least a manifest file
called MANIFEST.MF. This manifest is a text file that contains information about the
contents of the archive. Often, it only contains information about the version of the
manifest specification that this file follows and about the tool that created the archive.
You can try opening any JAR file with your favorite ZIP tool, e.g. with WinZIP. Then,
display the contents of the manifest file. If the jar-tool of JDK 6.0 created the file, you
would see something like this:

Manifest-Version: 1.0

Created-By: 1.6.0 (Sun Microsystems Inc.)

In addition, a manifest can hold a list of all files in the archive. Each such manifest entry
consists of a list of attribute-value pairs, with one such assertion per line. Blank lines
separate the individual entries.

A manifest of an archive that contains two files may look like this.

Manifest-Version: 1.0

Created-By: 1.1 (IAIK Jar Signer)

Name: iaik/apps/jarsigner/JarSigner.class

SHA1-Digest: uEHvlBbWNCr9vpkMImMgZ5g7EbM=

Name: iaik/apps/jarsigner/Manifest.class

SHA1-Digest: WSsnWP8K6OTCYH1fFtfj68fiKNk=

We can see that each entry has a Name attribute and a SHA1-Digest attribute. The
name refers to the name of the file in the archive and the digest attribute contains the
SHA-1 hash of this file as a base-64 encoded value. The signature can only protect files
of the archive that have such an entry.

The input to the signing process is not the manifest file. The input is a signature file,
which looks very similar to the manifest. This file resides in the META-INF directory
and has the file extension SF. A key alias usually serves as the base name of this file, but
in general, it is arbitrary. Based on the previous manifest example, the contents of a
signature file would look like the following:

Signature-Version: 1.0

SHA1-Digest-Manifest: 8Uy3LAro+t/2Cg9Udi96EGRihhw=

Created-By: 1.0 (IAIK Jar Signer)

Name: iaik/apps/jarsigner/JarSigner.class

SHA1-Digest: PZgxay+VQHGI3RO6S9ooZhhL9gg=

Name: iaik/apps/jarsigner/Manifest.class

SHA1-Digest: kEJh1iJQjLaViU0Y4bdEI0JOols=

The name attribute is the same as before. However, you might wonder why the hash
values of the entries are different to those of the manifest, even though the referenced
classes are the same. Instead of using the hash of the class files, the signing tool
calculates the hash over the corresponding entries of the manifest file. For example, to get
the hash value PZgxay+VQHGI3RO6S9ooZhhL9gg= for the JarSigner class, the tool
hashes these lines of the manifest (including the trailing blank line)

Name: iaik/apps/jarsigner/JarSigner.class

SHA1-Digest: uEHvlBbWNCr9vpkMImMgZ5g7EbM=

The complete SF file is the input of the signing process, which produces a digital
signature in PKCS#7 format. Please note that CMS is the successor standard of PKCS#7,

and both are compatible in our context. This signature does not contain the signed data,
which is sometimes called external, explicit or detached signature. The signer tool stores
this digital signature in the META-INF directory and uses the same base name as for the
signature file. The extension is RSA, DSA or ECDSA, depending on the signature
algorithm.

The signed JAR file can be verified using other tools like SUN's JAR Signing and
Verification tool ([3]).

For further details about the JAR file format, please refer to [1].

Creating a JAR Signature with IAIK-CMS
Once we have the signature file (SF), we need the signature key and the associated
certificate chain. The following code fragment shows the required steps to create a digital
signature, which is the content of the file with the RSA extension. This code uses the
IAIK-CMS library ([2]).

X509Certificate[] certificateChain = ...

iaik.x509.X509Certificate[] iaikCertificateChain =

 Util.convertCertificateChain(certificateChain);

IssuerAndSerialNumber issuerSerial =

 new IssuerAndSerialNumber(iaikCertificateChain[0]);

AlgorithmID signatureAlg = AlgorithmID.rsaEncryption;

AlgorithmID digestAlg = AlgorithmID. sha1;

SignerInfo signerInfo =

 new SignerInfo(issuerSerial, digestAlg, signatureAlg, signatureKey);

byte[] signatureFileContent = ... // the content of the *.SF file

SignedData signedData =

 new SignedData(signatureFileContent, SignedData.EXPLICIT);

signedData.setCertificates(iaikCertificateChain);

signedData.addSignerInfo(signerInfo);

byte[] digitalSignature = new ContentInfo(signedData).getEncoded();

Signing a JAR file

For signing a jar file you must create a JarSignStream with the jar file to be signed, the
signer key and the signer certificate chain:

// add IAIK provider

IAIK.addAsProvider();

// create jar file to be signed

JarFile jarFileToBeSigned = new JarFile(jarFileName_);

// signer key

PrivateKey signerKey = ...;

// signer certificate chain

X509Certificate[] signerChain = ...;

// name ("alias") of the signer key

String signerKeyName = ...;

Subsequently write the JarSignStream to the file you want to store the signed jar file:

// create a JarSignStream

JarSignStream jarSignStream =

 new JarSignStream(jarFileToBeSigned, signerKey, signerChain,

 signerKeyName);

// write to file

String signedJarFile = ...;

FileOutputStream output = new FileOutputStream(signedJarFile);

jarSignStream.writeTo(output);

output.flush();

output.close();

See the JarSigner source for a demo example. It also can be used to sign jar files with a
key contained in a HSM or smardcard (using the IAIK PKCS#11 provider for accessing
the hardware token).

Summary
This document describes the process of signing a JAR and explains the most important
contents of the manifest file, the signature file and the digital signature. Moreover, it
gives details about their construction. Finally, it shows how to calculate the digital
signature by using the IAIK-CMS library. With the code from the example program for
this article, an application can sign JAR files programmatically.

References
1. JAR File Specification

http://download.oracle.com/javase/1.5.0/docs/guide/jar/jar.html
2. IAIK-CMS Toolkit (containing the IAIK JarSigner tool)

http://jce.iaik.tugraz.at/products/communication_messaging_security/cms_s_mime
3. JAR Signing and Verification Tool

http://download.oracle.com/javase/1.5.0/docs/tooldocs/windows/jarsigner.html

