
 Stiftung SIC – http://jce.iaik.tugraz.at

PSK Cipher Suites
iSaSiLk Version 6

 Stiftung SIC – http://jce.iaik.tugraz.at

Copyright © 2006 – 2019 Stiftung Secure Information and

 Communication Technologies SIC

Java™ and all Java-based marks are trademarks or registered trademarks of Oracle Cor-
poration in the U.S. and other countries

All rights reserved.

 PSK Cipher Suites – iSaSiLk

 Stiftung SIC – http://jce.iaik.tugraz.at

Contents

1 INTRODUCTION... 5

2 PSK CIPHER SUITES ... 6

3 INSTALLATION .. 8

4 QUICK-START GUIDE .. 10

4.1 PSK CLIENT ... 10
4.2 PSK SERVER .. 12

5 CONFIGURATION AND USAGE ... 15

5.1 SETTING PSK CIPHER SUITES ... 15
5.2 SETTING THE PRE-SHARED KEY(S) .. 17
5.3 PRE-SHARED KEY MANAGEMENT ... 24

6 PSK CLIENT/SERVER EXAMPLE .. 35

6.1 PSK CLIENT ... 35
6.2 PSK SERVER .. 40

7 ACRONYMS ... 46

8 REFERENCES .. 47

 PSK Cipher Suites – iSaSiLk

 Stiftung SIC – http://jce.iaik.tugraz.at

 PSK Cipher Suites – iSaSiLk

 Stiftung SIC – http://jce.iaik.tugraz.at 5

1 Introduction
This manual describes how PSK cipher suites can be used with the SIC/IAIK TLS library
iSaSiLk. The reader should have some knowledge about the basic principles of the
Transport Layer Security ([TLS]) protocol and may have already used iSaSiLk for writ-
ing some simple client/server applications with standard cipher suites.

This manual is organized as followed: the first chapter gives a short introduction into the
idea of PSK cipher suites; for a detailed discussion refer to the PSK specification ([PSK])
of the TLS working group. The second and third chapters provide quick installation and
usage guides of the iSaSiLk PSK implementation. The fourth chapter gives a detailed
discussion about how to configure and use iSaSiLk with PSK cipher suites, and the final
fifth chapter illustrates the usage of PSK cipher suites by means of a simple client/server
sample program.

 PSK Cipher Suites – iSaSiLk

 Stiftung SIC – http://jce.iaik.tugraz.at 6

2 PSK Cipher Suites
Most commonly client/server authentication during a TLS handshake is performed by
means of public key certificates (see [TLS]). Especially for constrained or closed envi-
ronments the TLS working group has defined an alternative group of cipher suites using
pre-shared keys for peer authentication ([PSK]).

A pre-shared key is a symmetric key that has to be shared by client and server before the
TLS communication can take place. Since each party may have more than only one pre-
shared key (e.g. for communicating with different partners) it is necessary to negotiate
which key shall be used for authenticating the current TLS session. If both parties have
agreed upon using a PSK based cipher suite at the beginning of the handshake during ex-
changing the Hello messages, the client then uses the ClientKeyExchange message
for sending a "PSK identity"1 to announce which pre-shared key shall be used for the
current session. If the server has a key that corresponds to the psk identity received from
the client, both client and server use the same pre-shared key for generating the pre-
master secret. The pre-master secret is used for calculating the master secret from which
then the session keys are derived. Finally the handshake is completed by exchanging
ChangeCipherSpec and Finished messages which only can be correctly built if both
parties have used the same pre-shared key.

Depending on the underlying key management technique the PSK specification defines
three sets of PSK cipher suites (see [PSK]), which are all supported by iSaSiLk:

(A) PSK cipher suites using only symmetric keys for authentication:

o TLS_PSK_WITH_RC4_128_SHA,

o TLS_PSK_WITH_3DES_EDE_CBC_SHA,

o TLS_PSK_WITH_AES_128_CBC_SHA,

o TLS_PSK_WITH_AES_256_CBC_SHA

(B) PSK cipher suites using a pre-shared key for authenticating a Diffie-Hellman key ex-
change:

o TLS_DHE_PSK_WITH_RC4_128_SHA,

o TLS_DHE_PSK_WITH_3DES_EDE_CBC_SHA,

o TLS_DHE_PSK_WITH_AES_128_CBC_SHA,

o TLS_DHE_PSK_WITH_AES_256_CBC_SHA

1 For supporting the client in selecting the pre-shared key to be used, the server may send a “PSK identity
hint” within the ServerKeyExchange message. However, sending a psk identity hint is not recom-
mended by the specification ([PSK]). If not otherwise required by a particular application environment, the
server SHOULD NOT send an identity hint and the client MUST ignore an identity hint if received from
the server.

 PSK Cipher Suites – iSaSiLk

 Stiftung SIC – http://jce.iaik.tugraz.at 7

(C) PSK cipher suites using RSA based public key authentication of the server and mutu-
al authentication with a pre-shared key:

o TLS_RSA_PSK_WITH_RC4_128_SHA,

o TLS_RSA_PSK_WITH_3DES_EDE_CBC_SHA,

o TLS_RSA_PSK_WITH_AES_128_CBC_SHA,

o TLS_RSA_PSK_WITH_AES_256_CBC_SHA

Only the first set does not use public key operations at all. The second set may provide
perfect forward security, and the third set uses certificates for authenticating the server as
done by common cipher suites. However, all three sets are based on the availability of
pre-shared keys which have to be properly protected (see security considerations of
[PSK]).

In all three sets the client uses the ClientKeyExchange message for sending the “PSK
identity” to the server; however the client never sends a Certificate or
CertificateVerify message.

The server only sends a Certificate message if RSA based PSK cipher suites are used
(C), but he does not send a CertificateRequest message since certificate based cli-
ent authentication is not necessary for PSK cipher suites. The ServerKeyExchange
message is only sent if the server wants to provide a PSK identity hint (which is not rec-
ommended by the specification, see [PSK]), and/or Diffie-Hellman key exchange (B) is
used where the server must send its public Diffie-Hellman parameters to the client.

An additional RFC (4785) extends the basic set of PSK cipher suites about none-
encryption suites (see [PSK-NULL]):

o TLS_PSK_WITH_NULL_SHA,

o TLS_DHE_PSK_WITH_NULL_SHA,

o TLS_RSA_PSK_WITH_NULL_SHA

These three cipher suites are also supported by iSaSiLk, however, they only offer authen-
tication but do not encrypt the data (NULL encryption method).

 PSK Cipher Suites – iSaSiLk

 Stiftung SIC – http://jce.iaik.tugraz.at 8

3 Installation
There are no specific installation requirements other than when using iSaSiLk with com-
mon cipher suites. All you need is a JavaTM ([JAVA]) runtime environment (for instance
JRE 1.2.x, 1.3.x, 1.4.x, 1.5.x, 1.6.x or 1.7.x).

After having downloaded (or received by CD) and unpacked the iSaSiLk distribution file
(iSaSiLk<version>.zip) you will find the following folder hierarchy in your local
iSaSiLk installation directory:

 docs: the Javadoc output

 lib: contains the iSaSiLk library files, iaik_ssl.jar +
iaik_ssl_demo.jar (the demo classes), w3c_http.jar (W3C Jigsaw based
https library), and the IAIK-JCE library files, iaik_jce.jar (signed and un-
signed version2)

 manuals: additional manuals like the one you are currently reading

 demo/src: Source-Code of the iSaSiLk demo programs

 demo/lib: library jar files used by the demo programs

 demo/cmd: Windows batch files for running the iSaSiLk demos

 demo/sh: shell scripts for running the iSaSiLk demos on Linux

 images: Logos, ...

For running iSaSiLk you will have to put the iaik_ssl.jar file into your classpath.
For the required cryptographic functionalities you will need a proper JCA/JCE ([JCA],
[JCE]) provider. Most appropriate you will use the IAIK-JCE ([IAIK-JCE]) provider
which is included in the iSaSiLk license. If not already done, get IAIK-JCE from the
SIC/IAIK web site at http://jce.iaik.tugraz.at (please see the IAIK-JCE installation notes
for specific JCA/JCE related requirements like provider registration/signing or key
strength checking).

If you now want to try the PSK client/server demo included in the iaik_ssl_demo.jar
file your classpath has to look like (assuming that all required SIC/IAIK library files are
included in a lib sub-folder of your current working directory):

> set cp=lib/iaik_jce.jar;lib/iaik_ssl.jar;lib/iaik_ssl_demo.jar

First you will have to start the PSK demo server contained in package demo.psk and
then run the PSK demo client contained in the same package:

> java –cp %cp% demo.psk.PSKServer

2 Because of patent reasons iaik_jce.jar does not contain implementations of the IDEA, ESDH, RC5
and RC6 algorithms. You can download the full IAIK-JCE version (iaik_jce_full.jar) from the
SIC/IAIK web site http://jce.iaik.tugraz.at

 PSK Cipher Suites – iSaSiLk

 Stiftung SIC – http://jce.iaik.tugraz.at 9

> java –cp %cp% demo.psk.PSKClient

You also can go to the cmd/psk or sh/psk directory and run the runPSKServer.bat
and runPSKClient.bat batch scripts, or the runPSKServer.sh and
rundPSKClient.sh shell scripts, respectively.

 PSK Cipher Suites – iSaSiLk

 Stiftung SIC – http://jce.iaik.tugraz.at 10

4 Quick-Start Guide
In this chapter we provide a quick introduction into the iSaSiLk PSK implementation
without giving any deeper explanations. Based on some program fragments of a typical
client/server example we show step-by-step how to use iSaSiLk with PSK cipher suites
(see chapter 6 and iSaSiLk demo package demo.psk for detailed client/server examples).

First of all client and server have to agree on a pre-shared secret key. How this agreement
is achieved is out of scope of the [PSK] specification. In this manual we assume that cli-
ent and server already possess the same pre-shared key.

4.1 PSK Client

The following example shows how to write an iSaSiLk PSK client running on a host
named “pskclient.iaik.tugraz.at” and talking with a server “pskserver.iaik.tugraz.at” using
the same pre-shared key.

1. Create an SSLClientContext object and enable the PSK cipher suites you want to
use. In our example we want to support all psk cipher suites.

Listing 4-1: Setting PSK cipher suites for an SSLClientContext

2. Create a PSKCredential for your pre-shared key. Give the credential an identity –

in our example we use the client name “pskclient.iaik.tugraz.at” – and specify the re-
mote peer id of the server you want to connect to. Add the credential to your
SSLClientContext.

// client context

SSLClientContext context = new SSLClientContext();

...

CipherSuiteList suites = new CipherSuiteList();

suites.add(CipherSuite.CS_ALL_PSK);

context.setEnabledCipherSuiteList(suites);

context.updateCipherSuites();

 PSK Cipher Suites – iSaSiLk

 Stiftung SIC – http://jce.iaik.tugraz.at 11

Listing 4-2: Creating and setting a PSKCredential for the pre-shared key

3. Create an SSLSocket to talk with the server and configure it with the

SSLClientContext.

Listing 4-3: Creating an SSLSocket for connecting to the server

4. Open streams on the socket and communicate with the server in the usual way by

writing and reading from the streams, respectively.

// create SSLSocket

int serverPort = 443;

SSLSocket socket = new SSLSocket(serverName,

 serverPort,

 context);

// print debug info to System.out

socket.setDebugStream(System.out);

// the server we want to connect to

String serverName = "pskserver.iaik.tugraz.at";

...

// the pre-shared key negotiated with the server out-of-band

PreSharedKey psk = ...;

// create PSKCredential with identity "pskclient.iaik.tugraz.at"

String identity = "pskclient.iaik.tugraz.at";

PSKCredential credential = new PSKCredential(psk, identity);

// set remote peer id of server

credential.setRemotePeerId(serverName);

...

// enable pre-shared key by adding it to the context

context.addPSKCredential(credential);

 PSK Cipher Suites – iSaSiLk

 Stiftung SIC – http://jce.iaik.tugraz.at 12

Listing 4-4: Sending request to the server and reading response

4.2 PSK Server
On the server side the usage is quite similar except for that you must use an
SSLServerContext instead an SSLClientContext for configuring the server. The
server uses an SSLServerSocket to listen and accept client connection requests.

The following example represents a TLS server named “pskserver.iaik.tugraz.at” that us-
es a pre-shared key for TLS sessions with a client running on a host named
“pskclient.iaik.tugraz.at”.

// send GET-request

System.out.println("Sending HTTPS request to " + serverName);

PrintWriter writer =

 Utils.getASCIIWriter(socket.getOutputStream());

BufferedReader reader =

 Utils.getASCIIReader(socket.getInputStream());

writer.println("GET / HTTP/1.0");

writer.println();

writer.flush();

// read response

System.out.println("Reading response...");

while (true) {

 String line = reader.readLine();

 if (line == null) {

 break;

 }

 System.out.print(":");

 System.out.println(line);

}

// close streams and socket

writer.close();

reader.close();

socket.close();

 PSK Cipher Suites – iSaSiLk

 Stiftung SIC – http://jce.iaik.tugraz.at 13

1. Create an SSLServerContext object and enable the PSK cipher suites you want to
use. In our example we want to support all psk cipher suites.

Listing 4-5: Setting PSK cipher suites for an SSLServerContext

2. Create a PSKCredential for your pre-shared key. Give the credential an identity –

in our example we use the client name “pskclient.iaik.tugraz.at. Add the credential to
your SSLServerContext.

Listing 4-6: Creating and setting a PSKCredential for the pre-shared key

3. Create an SSLServerSocket to listen for client requests and configure it with the

SSLServerContext to understand PSK cipher suites.

Listing 4-7: Creating an SSLServerSocket for listening on client requests

// create SSLServerSocket

int port = 443;

SSLServerSocket serverSocket =

 new SSLServerSocket(port, serverContext);

// print debug info to System.out

serverSocket.setDebugStream(System.out);

// the pre-shared key negotiated with the client out-of-band

PreSharedKey psk = …;

// create PSKCredential with identity "pskclient.iaik.tugraz.at"

String identity = "pskclient.iaik.tugraz.at";

PSKCredential credential = new PSKCredential(psk, identity);

// enable pre-shared key by adding it to the server context

serverContext.addPSKCredential(credential);

// server context

SSLServerContext serverContext = new SSLServerContext();

...

CipherSuiteList suites = new CipherSuiteList();

suites.add(CipherSuite.CS_ALL_PSK);

serverContext.setEnabledCipherSuiteList(suites);

serverContext.updateCipherSuites();

 PSK Cipher Suites – iSaSiLk

 Stiftung SIC – http://jce.iaik.tugraz.at 14

4. Wait, accept and handle client requests in the usual way (see chapter 5 for a detailed

example).

Listing 4-8: Waiting for client requests

// accept client request

while (true) {

 try {

 SSLSocket socket = (SSLSocket)serverSocket.accept();

 ...

 } catch(IOException e) {

 e.printStackTrace(System.out);

 }

}

 PSK Cipher Suites – iSaSiLk

 Stiftung SIC – http://jce.iaik.tugraz.at 15

5 Configuration and Usage
In this chapter we describe how to configure iSaSiLk for using pre-shared key based ci-
pher suites. If you already have worked with iSaSiLk, you will know that TLS related
security parameters like cipher suite(s), key(s) or certificates have to be specified by an
SSLClientContext (client side) or SSLServerContext (server side) object, respec-
tively. When, for instance, creating an SSLSocket for opening a connection to some
TLS server, you have to configure the SSLSocket with an SSLClientContext:

Listing 5-1: SSLClientContext configuration

You are now ready to open in- and output streams on the SSLSocket object and ex-
change data with the server in quite the same way as accustomed from ordinary java.net
Socket objects.

So far we only have created an SSLClientContext object and passed it as parameter to
the SSLSocket object. For using pre-shared key based cipher suites we have to config-
ure the SSLClientContext with information about

 which PSK based cipher(s) suite shall be used

 which pre-shared key(s) shall be used

5.1 Setting psk cipher suites
Cipher suites are represented as instances of class CipherSuite. Each implemented ci-
pher suite can be referenced by the name of the corresponding static variable of class
CipherSuite. To tell iSaSiLk which cipher suites shall be used for a particular TLS
session you will have to use method setEnabledCipherSuiteList or
setEnabledCipherSuites of your SSLContext object, for instance:

// create SSLClientContext

SSLClientContext clientContext = new SSLClientContext();

...

// configure context

...

// the server to which to connect to

String serverName = "...";

int serverPort = 443;

// create SSLSocket to connect to the server

SSLSocket socket = new SSLSocket(serverName, serverPort,

clientContext);

// proceed as usual

...

 PSK Cipher Suites – iSaSiLk

 Stiftung SIC – http://jce.iaik.tugraz.at 16

Listing 5-2: Setting the cipher suite list of an SSLClientContext

In this example we have told our iSaSiLk client to use only one particular psk based ci-
pher suite, TLS_PSK_WITH_AES_128_CBC_SHA. If the server is able to support this ci-
pher suite, too, the handshake will succeed; otherwise – if the server does not support the
cipher suite – the handshake will fail. You can enable further cipher suites by repeatedly
adding them to the CipherSuiteList object. For your convenience class
CipherSuite also provides static array variables to specify groups of cipher suite ob-
jects. For use with pre-shared keys the following pre-defined cipher suite groups are
available:

 CipherSuite.CS_PSK: cipher suites using only symmetric keys for authentica-
tion

 CipherSuite.CS_DHE_PSK: PSK cipher suites using a pre-shared key for au-
thenticating a Diffie-Hellman key exchange

 CipherSuite.CS_RSA_PSK: PSK cipher suites using RSA based public key au-
thentication of the server and mutual authentication with a pre-shared key

 CipherSuite.CS_ALL_PSK: all supported PSK cipher suites

To, for instance, enable all implemented PSK cipher suites use the last one of these array
variables:

Listing 5-3: Enabling all PSK cipher suites

// create SSLClientContext

SSLClientContext clientContext = new SSLClientContext();

...

CipherSuite[] suites = CipherSuite.CS_ALL_PSK;

clientContext.setEnabledCipherSuites(suites);

clientContext.updateCipherSuites();

// create SSLClientContext

SSLClientContext clientContext = new SSLClientContext();

...

// create cipher suite list

CipherSuiteList csList = new CipherSuiteList();

// we only want to use one particular cipher suite

csList.add(CipherSuite.TLS_PSK_WITH_AES_128_CBC_SHA);

// enable and update cipher suite list

clientContext.setEnabledCipherSuiteList(csList);

clientContext.updateCipherSuites();

 PSK Cipher Suites – iSaSiLk

 Stiftung SIC – http://jce.iaik.tugraz.at 17

Be careful to only use cipher suites that your application environment is able to support.
RSA based PSK cipher suites, for instance, only will work if RSA signature and encryp-
tion algorithms are supported by the registered cryptographic providers (which is no
problem if you have installed the IAIK-JCE provider). Calling method
updateCipherSuites checks cryptographic engine availability and will remove all
unsupported cipher suites.

If you are on the server side – and are using RSA based PSK cipher suites – you also
must ensure to set RSA private key and server certificate(s) as required for server authen-
tication. DHE based PSK cipher suites will need (temporarily created) DH keys.

5.2 Setting the pre-shared key(s)
For being able to use a PSK based cipher suite both client and server must have the same
pre-shared key. A pre-shared key is a symmetric key and therefore is implemented as JCE
SecretKey (see package iaik.security.ssl):

public class PreSharedKey extends SecretKeySpec;

Since class PreSharedKey extends SecretKeySpec which implements the interface
javax.crypto.SecretKey, a PreSharedKey object maybe used like any other
SecretKey object. However, typically a pre-shared key will not be used with Cipher or
Mac engines; it only is required by the iSaSiLk library for deriving the pre-master secret
from it. There is no KeyGenerator or KeyFactory available for the PreSharedKey
type. A PreSharedKey object simply may be created from the raw keying material:

Listing 5-4: Creating a pre-shared key object

Implementing class PreSharedKey as SecretKey provides the possibility to use a Ja-
vaTM KeyStore for securely storing pre-shared keys.

A pre-shared key is identified by a PSK identity. For that reason it is necessary to provide
some means for binding a pre-shared key to its identity. This binding is provided by
iSaSiLk class PSKCredential of package iaik.security.ssl:

public class PSKCredential;

byte[] keyBytes = …;

PreSharedKey psk = new PreSharedKey(keyBytes);

 PSK Cipher Suites – iSaSiLk

 Stiftung SIC – http://jce.iaik.tugraz.at 18

When creating a new PSKCredential object it is necessary to specify the identity that
shall be used to identify the pre-shared key. There does not exist a specific role how PSK
identities have to be built and represented. For instance, an identity might be an IPv4 ad-
dress (e.g. “129.0.0.1”), or a domain name (like “jce.iaik.tugraz.at”), or a X.500 distin-
guished name (e.g. “CN=jce.iaik.tugraz.at”). However, when encoding an identity, it first
has to be converted to a character string and then encoded into octets according to the
UTF-8 ([UTF8]) syntax (see [PSK]). For that reason a PSK identity can be specified in
two ways when creating a PSKCredential object: as String object (see Listing 5-5), or
as byte array representing the UTF-8 encoded identity character string (see Listing 5-6).
For instance, client "pskclient.iaik.tugraz.at" and server "pskserver.iaik.tugraz.at" may
have agreed on a pre-shared key that shall be identified by the name of the client. Both
client and server can create the required PSKCredential in the same way by using
"pskclient.iaik.tugraz.at" as identity String:

Listing 5-5: Creating a PSKCredential from identity string and pre-shared key

or:

Listing 5-6: Creating a PSKCredential from identity bytes and pre-shared key

Since we may want to talk with more than only one communication partner, we may have
to maintain a certain number of pre-shared keys. As already discussed, a pre-shared key
is identified by a psk identity which is sent by the client to the server within the
ClientKeyExchange message. At this time the server already may have used its
ServerKeyExchange message to provide a psk identity hint for helping the client to
select a proper pre-shared key. Although the usage of psk identity hints is not recom-

// PSK identity as UTF-8 encoded byte array

byte[] identity = "pskclient.iaik.tugraz.at".getBytes("UTF-8");

// the pre-shared key

byte[] psk = ...;

// create PSKCredential

PSKCredential pskCredential = new PSKCredential(identity, psk);

// PSK identity as String

String identityStr = "pskclient.iaik.tugraz.at";

// the pre-shared key

byte[] psk = ...;

// create PSKCredential

PSKCredential pskCredential = new PSKCredential(identityStr, psk);

 PSK Cipher Suites – iSaSiLk

 Stiftung SIC – http://jce.iaik.tugraz.at 19

mended by the specification ([PSK]) we may have two similar situations on both, client
and server side when searching for the right pre-shared key in the local repository:

1. The client, when going to talk with some specific server (e.g. “pskserv-
er.iaik.tugraz.at”) will have to search for a pre-shared key that has been previously
shared with this server by other means. He may do so by searching based on the
server name, IP address, or any other characteristic that is appropriate for identify-
ing the server.

2. The client, when having received a psk identity hint from the server, may use this
identity hint to search for the right pre-shared key.

On the server side we may have the following situations:

1. The server, when having received a ClientHello message indicating to use a
PSK cipher suite, may wish to send a psk identity hint to the client. In this case
the server will have to search for a pre-shared key that has been previously shared
with this client by other means. He may do so by searching based on the client
name, IP address, or any other characteristic that is appropriate for identifying the
client.

2. The server, when having received the psk identity within the client key exchange
message, may use this identity to search for the right pre-shared key.

In the first situation we search for the pre-shared key based on some information that
identifies the peer. In the second situation we already have precise psk identity infor-
mation that uniquely identifies (by identity or identity hint) some particular pre-shared
key to be used.

We already have seen that the identity has to be specified when creating a
PSKCredential for some particular pre-shared key. If you need to set a psk identity
hint or a remote peer id, use method setIdentityHint or setRemotePeerId, respec-
tively.

Like a psk identity, a psk identity hint may be given as String object or as byte array rep-
resenting the UTF-8 encoded identity hint character string. For instance, server “pskserv-
er.iaik.tugraz.at” may want to send a psk identity hint to tell the client to use the pre-
shared key with identity (hint) “pskclient.iaik.tugraz.at”:

Listing 5-7: Setting identity hint string of a PSKCredentials

// PSK identity hint as String

String identityHintStr = "pskclient.iaik.tugraz.at";

pskCredential.setIdentityHint(identityHintStr);

 PSK Cipher Suites – iSaSiLk

 Stiftung SIC – http://jce.iaik.tugraz.at 20

or:

Listing 5-8: Setting identity hint bytes of a PSKCredential

The format of the remote peer id depends on the transport mechanism that is used for the
TLS communication. Most commonly you will use TCP based SSLSockets for running
TLS over TCP. In this case the remote peer id may be given as, for instance, client/server
name or ip address, e.g.:

Listing 5-9: Setting the remote peer id of a PSKCredential

However, TLS is a transport independent protocol and for some reason it might be neces-
sary to use a transport mechanism where the peer is identified by a characteristic that is
not represented by a name or an ip address. For that reason method setRemotePeerId
expects a general JavaTM object as argument. This allows you to specify remote peer ids
in accordance with the SSLTransport implementation that is used by your application.

In summary a PSKCredential contains the following information:

 A psk identity to uniquely identify the pre-shared key. The client sends the psk
identity within the ClientKeyExchange message to tell the server which pre-
shared key shall be used for authenticating a TLS session.

 The pre-shared key to be used with the psk identity.

 A psk identity hint (optional) which may be sent by the server with the
ServerKeyExchange message to help the client to select the right pre-shared
key.

 The remote peer id (optional) of communication partner.

Finally completing our configuration example we have to tell iSaSiLk to use our
PSKCredential by passing it to the SSL(Client)Context object:

String serverName = "pskserver.iaik.tugraz.at";

pskCredential.setRemotePeerId(serverName);

// PSK identity hint as UTF-8 encoded byte array

byte[] identityHint =

 "pskclient.iaik.tugraz.at".getBytes("UTF-8");

pskCredential.setIdentityHint(identityHint);

 PSK Cipher Suites – iSaSiLk

 Stiftung SIC – http://jce.iaik.tugraz.at 21

Listing 5-10: Configuring an SSLClientContext for using a pre-shared keys

Please note that in this example we do not specify a psk identity hint or a remote peer id
for our PSKCredential. We do not want to support psk identities and we do not need to
search for a pre-shared key based on a remote peer id. We already know that we want to
use the pre-shared key of this credential for the following TLS session with server
“pskserver.iaik.tugraz.at”; thus we use method setPSKCredential for setting it as the one
and only pre-shared key of our SSLClientContext object.

On the server side, however, we usually may have to configure one SSLServerContext
for one SSLServerSocket to communicate with a possibly large number of clients. At
configuration time we do not know which client(s) may connect to the server during its
operation interval. Thus, for each client for which we want to support a PSK based TLS
communication, we have to tell iSaSiLk the corresponding pre-shared key in advance.
For this purpose we use method addPSKCredential of the SSL(Server)Context
object:

// create SSLClientContext

SSLClientContext clientContext = new SSLClientContext();

// enable psk cipher suites

CipherSuite[] suites = CipherSuite.CS_ALL_PSK;

clientContext.setEnabledCipherSuites(suites);

clientContext.updateCipherSuites();

// PSK identity as String

String identityStr = "pskclient.iaik.tugraz.at";

// the pre-shared key

PreSharedKey psk = ...;

// create PSKCredential

PSKCredential pskCredential = new PSKCredential(identityStr, psk);

// activate psk credential

clientContext.setPSKCredential(pskCredential);

// the server to which to connect to

String serverName = "pskserver.iaik.tugraz.at";

int serverPort = 443;

// create SSLSocket to connect to the server

SSLSocket socket = new SSLSocket(serverName, serverPort,

clientContext);

// proceed as usual

...

 PSK Cipher Suites – iSaSiLk

 Stiftung SIC – http://jce.iaik.tugraz.at 22

Listing 5-11: Configuring an SSLServerContext for using a pre-shared keys

Now both client and server are configured to use a pre-shared key with the client name as
identity. In its ClientKeyExchange message the client sends the identity
(“pskclient.iaik.tugraz.at”) to the server who then knows which pre-shared key to be used
for the TLS session.

As you see, on the server side our PSKCredential does not contain a PSK identity hint
or remote peer id, too. Both are only required if the server wants to support psk identity
hints. In this case he would need to know the remote peer id of the client to send him a
hint for key the client shall use:

// create a SSLServerContext to configure the server

SSLServerContext serverContext = new SSLServerContext();

// enable psk cipher suites

CipherSuite[] suites = CipherSuite.CS_ALL_PSK;

serverContext.setEnabledCipherSuites(suites);

serverContext.updateCipherSuites();

// PSK identity as String

String identityStr = "pskclient.iaik.tugraz.at";

// the pre-shared key

PreSharedKey psk = ...;

// create PSKCredential

PSKCredential pskCredential = new PSKCredential(identityStr, psk);

// activate psk credential

serverContext.addPSKCredential(pskCredential);

...

// add any further psk credentials if required

...

// create SSLServerSocket to listen for connections

SSLServerSocket socket = new SSLSocket(443, serverContext);

// proceed as usual

...

 PSK Cipher Suites – iSaSiLk

 Stiftung SIC – http://jce.iaik.tugraz.at 23

Listing 5-12: Using PSK identity hints requires to know the remote peer id of the client

The last line tells the iSaSiLk server that he shall send a psk identity hint within the
ServerKeyExchange message.

Since by default – as recommended by the TLS [PSK] specification – psk identity hints
are ignored, an iSaSiLk client has to be explicitly configured to recognize a psk identity
hint sent by the server:

Listing 5-13: Configuring a client to recognize psk identity hints sent by the server

...

// psk identity hint

String identityHintStr = identityStr;

pskCredential.setIdentityHint(identityHintStr);

// remote peer id of the client

pskCredential.setRemotePeerId("pskserver.iaik.tugraz.at");

// activate psk credential

clientContext.addPSKCredential(pskCredential);

// configure ClientContext to recognize an identity hint

clientContext.setIgnorePSKIdentityHint(false);

...

// PSK identity as String

String identityStr = "pskclient.iaik.tugraz.at";

// the pre-shared key

byte[] psk = ...;

// create PSKCredential

PSKCredential pskCredential = new PSKCredential(identityStr, psk);

// psk identity hint

String identityHintStr = identityStr;

pskCredential.setIdentityHint(identityHintStr);

// remote peer id of the client

pskCredential.setRemotePeerId("pskclient.iaik.tugraz.at");

// activate psk credential

serverContext.addPSKCredential(pskCredential);

// configure ServerContext to send psk identity hints

serverContext.setSendPSKIdentityHint(true);

 PSK Cipher Suites – iSaSiLk

 Stiftung SIC – http://jce.iaik.tugraz.at 24

When the server now sends a psk identity hint the client searches for a matching psk cre-
dential and the handshake can continue (note, that in our example we have used the same
id for identity and identity hint).

As you might have noticed the last client example uses method addPSKCredential in-
stead of setPSKCredential to pass the psk credential to the SSLClientContext ob-
ject. This is quite possible, however, please not the difference:

Method setPSKCredential associates a PSKCredential (and its pre-shared key)
with one particular SSLContext. This means that this SSLContext only can be used
with this PSKCredential. During the handshake, when iSaSiLk asks for a pre-shared
key to calculate the premaster secret, the SSLContext method getPSKCredential
will return the PSKCredential that has been set by calling method
setPSKCredential. Be careful when using method setPSKCredential on the server
side. In this case your server will only have one single pre-shared key to be used with any
client that requests a PSK based TLS communication.

Method addPSKCredential adds a PSKCredential to the internal credential reposi-
tory. When used on the client side, any PSKCredential to be added has to contain a
remote peer id to tell iSaSiLk for which server the credential shall be used. When used on
the server side, a remote peer id is only required if the server wants to send psk identity
hints. In this case he must know which psk credential shall be sent to which client. If psk
identitiy hints must not be used, remote peer ids are not required for credentials on the
server side because any credential is uniquely identified by the psk identity received from
the client.

When calling method addPSKCredential the PSKCredential internally is forwarded
to the so-called PSKManager which is responsible for psk credential maintaining. If you
want to know more about the iSaSiLk psk credential management you may read the next
section. However, if you do not intend to write and plug-in your own PSKManager, you
already have learned enough to design and run your own psk based TLS client-server ap-
plication. All you have to do is to create and configure PSKCredentials for the pre-shared
keys you have negotiated with the client(s)/server(s) you want to talk with. See chapter 6
for a final client-server example that uses pre-shared key based cipher suites.

If required, you also may override the SSLContext method getPSKCredential. In
this case you may not need add/setPSKCredential at all. When iSaSiLk calls method
getPSKCredential to ask for a particular pre-shared key you may, for instance, pop-up
a dialog window to let the user enter the required pre-shared key.

5.3 Pre-shared key management
As we have learned in the last chapter, a PSKCredential associates a pre-shared key
with identity, (optional) identity hint and (optional) remote peer id. Depending on the
number of client or servers we want to be able to hold psk based TLS communications,
we may have to maintain a certain number of psk credentials.

 PSK Cipher Suites – iSaSiLk

 Stiftung SIC – http://jce.iaik.tugraz.at 25

PSK credential management is the responsibility of the iSaSiLk PSKManager. Generally
you can use iSaSiLk for psk based TLS communications without any knowledge of the
PSK manager architecture. The PSK manager works silently in background. Anytime you
add a PSKCredential to an SSLContext object, it is forwarded to the internal
PSKManager. And anytime iSaSiLk needs a pre-shared key for authenticating a TLS ses-
sion with some particular peer, it asks the internal PSKManager for a proper
PSKCredential.

The PSKManager itself is an abstract class of package iaik.security.ssl:

public abstract class PSKManager;

It defines some methods that may have to be overridden by a specific PSKManager im-
plementation. For a detailed description of all PSKManager methods please see the
iSaSiLk Javadoc documentation. In this chapter we only will discuss the two most im-
portant methods addPSKCredential and getPSKCredential.

Method addPSKCredential adds a PSKCredential to the PSKManager repository;
method getPSKCredential searches the repository for a PSKCredential based on its
identity, identity hint or remote peer id.

Method addPSKCredential expects the PSKCredential object to be added as argu-
ment:

public void addPSKCredential(PSKCredential pskCredential);

When adding a PSKCredential you already decide about the information that later can
be used by iSaSiLk when searching for a PSKCredential by calling method
getPSKCredential. Since a PSKCredential must have a psk identity you always can
search for psk credentials based on their identities. However, to search for a psk creden-
tial based on a psk identity hint or remote peer id the PSKCredential you want to add
shall contain a psk identity hint and/or a remote peer id, respectively:

 PSK Cipher Suites – iSaSiLk

 Stiftung SIC – http://jce.iaik.tugraz.at 26

Listing 5-14: Creating and adding a PSKCredential

The last line from Listing 5-14 has the same effect as when calling:

context.getPSKManager().addPSKCredential(pskCredential);

However, when is it necessary to set an identity hint and/or remote peer for a
PSKCredential? On the server side a PSKCredential only will have to contain a psk
identity hint if the server wants to send a psk identity hint to the client
(serverContext.setSendPSKIdentityHint(true), see 4.2). In this case the
PSKCredential must contain a remote peer id, too. The identity hint is sent in the
ServerKeyExchange message to help the client to select the pre-shared key for the
forthcoming TLS session. Before sending the ServerKeyExchange message the server
must decide which of his pre-shared keys shall be used for the session with the client that
has initiated the TLS handshake. Thus the server must search his PSKCredential re-
pository based on the remote peer id of the client. If he finds a PSKCredential that
contains a psk identity hint, he can send the hint to the client. If he does not find a proper
PSKCredential he may continue the handshake without sending an identity hint, or he
may abort the handshake.

 If, for instance, client “pskclient.iaik.tugraz.at” has connected to server “pskserv-
er.iaik.tugraz.at” the remote peer id may be the DNS name of the client. If the credential
repository of the server does contain a PSKCredential with remote peer id
“pskclient.iaik.tugraz.at”, the server may send the psk identity hint – if included – of this
PSKCredential to the client.

...

String identity = ...;

// the pre-shared key

PreSharedKey psk = ...;

// create PSKCredential

PSKCredential pskCredential = new PSKCredential(identity, psk);

// psk identity hint

String identityHint = ...;

pskCredential.setIdentityHint(identityHint);

// remote peer id of the client

pskCredential.setRemotePeerId(...);

// activate psk credential

context.addPSKCredential(pskCredential);

...

 PSK Cipher Suites – iSaSiLk

 Stiftung SIC – http://jce.iaik.tugraz.at 27

Please note that the TLS [PSK] specification does not recommend using psk identity
hints. For that reason, in general, your server-side PSKCredentials may not have to con-
tain psk identity hint or remote peer id information at all.

Client-side PSKCredentials only must contain psk identity hints if the client allows to se-
lect pre-shared keys based on a psk identity hint received from the server
(clientContext.setIgnorePSKIdentityHint(false), see Listing 5-12 of chap-
ter 5.2). In this case the PSKCredential may not have to contain a remote peer id be-
cause it is uniquely identified by the identity hint.

However, in general psk identity hint processing should be disabled. Thus any
PSKCredential that is added on the client side by calling
clientContext.addPSKCredential shall contain the remote peer id of the server! In
contrast to method setPSKCredential (which exclusively sets a particular
PSKCredential for an SSLClientContext), method addPSKCredential puts the
PSKCredential into the PSKManager repository.

If the client, for instance, wants to connect to server “pskserver.iaik.tugraz.at”, he must
know which of his pre-shared keys has to be used for a PSK based TLS session with this
server. The client will call his PSKManager to ask him for a PSKCredential with re-
mote peer id “pskserver.iaik.tugraz.at”. The PSKManager will return the appropriate
PSKCredential, if included in his psk database. Now the client can send the psk identi-
ty of the PSKCredential to the server to indicate which pre-shared key shall be used.

Note the difference: On the server side remote peer ids must only be included in the
PSKCredentials if the server wants to send psk identity hints; on the client side remote
peer ids shall be included in any case, but must be included if psk identity hint processing
is NOT enabled.

Figure 5-1 and Figure 5-2 demonstrate the two different situations.

 PSK Cipher Suites – iSaSiLk

 Stiftung SIC – http://jce.iaik.tugraz.at 28

ServerClient

pskclient.iaik.at

PSK Credential

Identity

pskclient.iaik.at

Remote Peer Id

pskserver.iaik.at

Pre shared key

...
PSK Credential

Remote Peer Id

pskserver.sic.st

Identity

pskclient.sic.st

Pre shared key

PSK Credential

Pre shared key

Identity

pskclient.iaik.at

Remote Peer Id

pskserver.iaik.at

Identity

pskclient.iaik.at

...

PSK Manager PSK Manager

Identity

1

2
3

Figure 5-1: PSK management without using identity hints

In scenario a) (Figure 5-1) psk identity hint processing is disabled. The client starts the
handshake and asks his PSKManager for a PSKCredential with the remote peer id of
the server “pskserver.iaik.at”. In his ClientKeyExchange message the client sends the
identity of the PSKCredential to the server, who uses the identity to search for the
proper pre-shared key. On the client side PSKCredentials must contain a remote peer id
(since the Client-PSKManager searches based on the remote peer id of the server); on the
server side no remote peer ids are required (since the PSKManager searches based on the
psk identity received from the client).

 PSK Cipher Suites – iSaSiLk

 Stiftung SIC – http://jce.iaik.tugraz.at 29

...

PSK Manager

ServerClient

...

PSK Manager

pskclient.iaik.at

Identiy
Hint

PSK Credential

Remote Peer Id

pskclient.iaik.at

Identity Hint

pskclient.iaik.at

Identity

pskclient.iaik.at

Pre shared key

PSK Credential

Remote Peer Id

pskclient.sic.st

Identity Hint

pskclient.sic.st

Identity

pskclient.sic.st

Pre shared key

...

PSK Credential

Identity Hint

pskclient.iaik.at

Identity

pskclient.iaik.at

Pre shared key

Remote Peer Id

pskclient.iaik.at

Identity Hint

pskclient.iaik.at

psk
cli

ent.ia
ik.

at
Id

entiy

1

2

3

4

Figure 5-2: PSK management with identity hints

Scenario b) (Figure 5-2) shows the proceeding when psk identity hint processing is ena-
bled. After having received the ClientHello message, the server asks his PSKManager
for a PSKCredential with the remote peer id of the client “pskclient.iaik.at”. In his
ServerKeyExchange message the server sends the identity hint to the client, who uses
the identity hint to search for a proper PSKCredential. In this case the PSKCredentials
on the client side may not contain a remote id (since the identity hint of the server is used
as search key), but server-side PSKCredentials must contain a remote peer id (since the
Server-PSKManager searches based on the remote peer id of the client).

 PSK Cipher Suites – iSaSiLk

 Stiftung SIC – http://jce.iaik.tugraz.at 30

The choice of identity and identity hint values may depend on the specific application
environment. In our example identity, identity hint and client peer id all have the same
value.

When consulting the PSKManager to ask for a proper PSKCredential, iSaSiLk calls
the PSKManager method getPSKCredential:

public PSKCredential getPSKCredential(byte[] identity,

 SSLTransport transport);

The first argument (identity) – if not null – represents the psk identity received from the
client (server-side), or the psk identity hint received from the server (client-side). In this
case the default PSKManager ignores the second argument (transport) and searches for a
PSKCredential based on the given identity bytes. On the server side this behavior rep-
resents scenario a) from Figure 5-1(the server has received an identity from the client); on
the client side we are in scenario b) as shown in Figure 5-2where we have to search based
on the identity hint received from the server. If you write and plug-in your own
PSKManager implementation your psk management policy may need additional
SSLTransport based information (like the remote peer id) also when searching for a
PSKCredential based on its identity. For instance, you may want to allow that a
PSKCredential used with one peer may have the same identity as one used with anoth-
er peer). In such case you may get the required peer identification information from the
SSLTransport argument.

If the first argument (identity) is null the search has to be done based on information
got from the second argument (transport) only. The default PSKManager implemen-
tation gets the remote peer id from the SSLTransport object and searches his database
for a proper PSKCredential. On the server side we will have to search based on
transport information only if we want to send a psk identity hint (scenario b); on the cli-
ent side we have to use the remote peer id from the SSLTransport to search for a
PSKCredential (scenario a).

When asking the given SSLTransport for peer identification information, the default
PSKManager implementation calls the following SSLTransport methods (in that or-
der):

1. transport.getRemotePeerName();

2. transport.getRemoteIndetAddress().getHostAddress();

3. transport.getRemotePeerId();

If you are, for instance, on the client side and want to go into a psk based TLS session
with a server "pskserver.iaik.tugraz.at" with ip address "129.27.142.47" listening on port
4433, the SSL(Socket)Transport methods above will return the following values (in that
order):

 PSK Cipher Suites – iSaSiLk

 Stiftung SIC – http://jce.iaik.tugraz.at 31

1. pskserver.iaik.tugraz.at

2. 129.27.142.47

3. 129.27.142.47:4433

As mentioned you can write your own PSKManager by extending the abstract
PSKManager class:

Listing 5-15: Extend class PSKManager to implement your own pre-shared key management

You then can install your PSKManager class as new default PSKManager to be used, or
set it for one particular SSLContext only:

Listing 5-16: Setting a default PSKManager

or:

Listing 5-17: Setting a PSKManager for a particular SSLContext

If you install your PSKManager as default PSKManager it will be used by any further
SSLContext objects that may be created; if you enable it for one specific SSLContext
object, it will be used by this SSLContext only. Please see the iSaSiLk Javadoc for a
detailed description of the PSKManager methods you will have to implement for your
own PSKManager implementation.

In chapter 5.2we have said that a JavaTM KeyStore can be used for securely storing pre-
shared keys. However, when using a KeyStore you only can associate an alias with the
secret (pre-shared) key. This might be quite sufficient if your PSKCredentials only will
contain pre-shared keys and identities. In this case you may use the psk identity as alias
for the KeyStore entry, e.g.:

MyPSKManager myPSKManager = new MyPSKManager();

SSLContext context = …;

context.setPSKManager(myPSKManager);

MyPSKManager myPSKManager = new MyPSKManager();

PSKManager.setDefault(myPSKManager);

public class MyPSKManager extends iaik.security.ssl.PSKManager {

 …

}

 PSK Cipher Suites – iSaSiLk

 Stiftung SIC – http://jce.iaik.tugraz.at 32

Listing 5-18: Saving pre-shared keys to a JavaTM KeyStore

When loading the KeyStore again you will have to use the identity string as alias to read
the pre-shared from the KeyStore. If, for instance, we have used the name of the client
“pskclient.iaik.tugraz.at” as identity string we now have to use it as alias for getting the
corresponding pre-shared key:

// create KeyStore instance

KeyStore keyStore = KeyStore.getInstance("IAIKKeyStore");

// load KeyStore from file

InputStream is = ...;

Char[] pwd = ...;

keyStore.load(is, pwd);

// get identity and pre-shared key from PSKCredential

PSKCredential pskCredential = ...;

String identityStr = pskCredential.getIdentityString();

SecretKey psk = pskCredential.getPSK();

// use identity as alias when adding the psk to the KeyStore

keyStore.setKeyEntry(identityStr, psk, pwd, null);

// store KeyStore to file

OutputStream os = ...;

keyStore.store(os, pwd);

 PSK Cipher Suites – iSaSiLk

 Stiftung SIC – http://jce.iaik.tugraz.at 33

Listing 5-19: Reading pre-shared keys from a JavaTM KeyStore

When using a JavaTM KeyStore as storage medium, be aware that you only can keep the
identity associated with the pre-shared key, but not the remote peer id and/or psk identity
hint of a PSKCredential (except for when identity, identity hint and remote peer id are
all the same). For that reason, the iSaSiLk DefaultPSKManager provides store and
load methods allowing to password based encrypted store the full PSKManager con-
tents:

Listing 5-20: Password-based storing the contents of the DefaultPSKManager

// the stream to which to store the PSKManager

OutputStream os = …;

char[] pwd = …;

// get DefaultPSKManager

DefaultPSKManager pskManager =

 (DefaultPSKManager)PSKManager.getDefault();

// store DefaultPSKManager

pskManager.store(os, pwd);

// create KeyStore instance

KeyStore keyStore = KeyStore.getInstance("IAIKKeyStore");

// load KeyStore from file

InputStream is = ...;

Char[] pwd = ...;

keyStore.load(is, pwd);

// get the pre-shared key

String alias = "pskclient.iaik.tugraz.at";

SecretKey psk = (SecretKey)keyStore.getKey(alias, pwd);

...

// create PSKCredential for pre-shared key

PSKCredential pskCredential = new PSKCredential(alias, psk);

// add PSKCredential to SSLContext

SSLContext context = ...;

context.addPSKCredential(pskCredential);

...

 PSK Cipher Suites – iSaSiLk

 Stiftung SIC – http://jce.iaik.tugraz.at 34

When loading the (Default)PSKManager again use the same password:

Listing 5-21: Reading the contents of a stored DefaultPSKManager

Please note that the store and load methods are only available for the
DefaultPSKManager, but must not be provided by any PSKManager implementation.
The DefaultPSKManager uses PKCS#5 PBKDF2 as key derivation function, AES for
symmetric content encryption and HmacSHA256 for content integrity protection.

// the stream from which to read the PSKManager

InputStream is = …;

char[] pwd = …;

// create and laod DefaultPSKManager

DefaultPSKManager pskManager = new DefaultPSKManager();

pskManager.load(is, pwd);

// enable PSKManager

PSKManager.setDefault(pskManager);

// store DefaultPSKManager

 PSK Cipher Suites – iSaSiLk

 Stiftung SIC – http://jce.iaik.tugraz.at 35

6 PSK Client/Server example
In this chapter finally we present the source code of a simple TLS client/server example
using pre-shared key based cipher suites. We assume that client “pskclient.iaik.tugraz.at”
and server “pskserver.iaik.tugraz.at” have negotiated a pre-shared key out of band. The
pre-shared key shall be identified by the DNS name of the client
“pskclient.iaik.tugraz.at”. PSK identity hints shall not be supported. Thus the
PSKCredential on the client-side has to contain the remote peer id of the server
(“pskserver.iaik.tu.graz”), whereas the server does not need to know the peer id of the
client because he uses the psk identity sent by the client to search for the right
PSKCredential.

6.1 PSK Client
The sample client uses a pre-shared key with identity “pskclient.iaik.tugraz.at” to connect
to server “pskserver.iaik.tugraz.at” listening for TLS connections on port 4433. In this
example we use PSK cipher suites with symmetric key based authentication only.

import iaik.security.provider.IAIK;

import iaik.security.ssl.CipherSuite;

import iaik.security.ssl.CipherSuiteList;

import iaik.security.ssl.PSKCredential;

import iaik.security.ssl.SSLClientContext;

import iaik.security.ssl.SSLSocket;

import iaik.security.ssl.Utils;

import java.io.BufferedReader;

import java.io.IOException;

import java.io.PrintWriter;

/**

 * Sample PSKClient using a pre-shared key with identity

 * "pskclient.iaik.tugraz.at" to held a psk cipher suite based

 * TLS session with server "pskserver.iaik.tugraz.at".

 */

public class PSKClient {

 /**

 * Default constructor.

 * Creates a PSKClient object.

 */

 public PSKClient() {

 }

 PSK Cipher Suites – iSaSiLk

 Stiftung SIC – http://jce.iaik.tugraz.at 36

 /**

 * Connects to the given server at the given port.

 *

 * @param serverName the server name

 * @param serverPort the port the server is listening for connections

 * @param context the SSLContext with the TLS client configuration

 */

 public void connect(String serverName,

 int serverPort,

 SSLClientContext context) {

 SSLSocket socket = null;

 PrintWriter writer = null;

 BufferedReader reader = null;

 try {

 System.out.println("Connect to " + serverName + " on port " +

 serverPort);

 // create SSLSocket

 socket = new SSLSocket(serverName, serverPort, context);

 // print debug info to System.out

 socket.setDebugStream(System.out);

 // start handshake

 socket.startHandshake();

 System.out.println();

 // informationen about the server:

 System.out.println("TLS-Connection established.");

 System.out.println("Session-Parameters:");

 System.out.println("Active cipher suite: " +

 socket.getActiveCipherSuite());

 System.out.println("Active compression method: " +

 socket.getActiveCompressionMethod());

 // dump psk identity

 String pskIdentity = socket.getPSKIdentity();

 PSK Cipher Suites – iSaSiLk

 Stiftung SIC – http://jce.iaik.tugraz.at 37

 if (pskIdentity != null) {

 System.out.println("PSK Identity: " + pskIdentity);

 }

 System.out.println();

 // send GET-request

 System.out.println("Sending HTTPS request to " + serverName);

 writer = Utils.getASCIIWriter(socket.getOutputStream());

 reader = Utils.getASCIIReader(socket.getInputStream());

 writer.println("GET / HTTP/1.0");

 writer.println();

 writer.flush();

 // read response

 System.out.println("Reading response...");

 while(true) {

 String line = reader.readLine();

 if(line == null) {

 break;

 }

 System.out.print(":");

 System.out.println(line);

 }

 } catch(IOException e) {

 System.err.println("IOException:");

 e.printStackTrace(System.err);

 } finally {

 if (writer != null) {

 writer.close();

 }

 if (reader != null) {

 try {

 reader.close();

 } catch (IOException ex) {

 // ignore

 }

 }

 PSK Cipher Suites – iSaSiLk

 Stiftung SIC – http://jce.iaik.tugraz.at 38

 if (socket != null) {

 try {

 socket.close();

 } catch (IOException ex) {

 // ignore

 }

 }

 }

 }

 /**

 * Main method. Starts the client, connects to the server,

 * sends a HTTP GET request and reads the response.

 */

 public static void main(String arg[]) throws IOException {

 // the server we want to connect to

 String serverName = "pskserver.iaik.tugraz.at";

 int serverPort = 4433;

 // add the IAIK crypto provider

 IAIK.addAsProvider(true);

 // client context

 SSLClientContext context = new SSLClientContext();

 // the pre-shared key negotiated with the server out-of-band

 PreSharedKey psk = …;

 // create PSKCredential with identity "pskclient.iaik.tugraz.at"

 String identity = "pskclient.iaik.tugraz.at";

 PSKCredential credential = new PSKCredential(psk, identity);

 // set remote peer id of server

 credential.setRemotePeerId(serverName);

 // enable psk credential pre-shared key

 context.addPSKCredential(credential);

 // enable PSK cipher suites (in this sample we want use

 // only symmetric key operations for authentication)

 PSK Cipher Suites – iSaSiLk

 Stiftung SIC – http://jce.iaik.tugraz.at 39

 CipherSuiteList suites = new CipherSuiteList();

 suites.add(CipherSuite.CS_PSK);

 context.setEnabledCipherSuiteList(suites);

 context.updateCipherSuites();

 // dump context

 System.out.println("Context:\n" + context);

 System.out.println();

 // create PSKClient

 PSKClient client = new PSKClient();

 // connect to server

 client.connect(serverName, serverPort, context);

 }

}

 PSK Cipher Suites – iSaSiLk

 Stiftung SIC – http://jce.iaik.tugraz.at 40

6.2 PSK Server
The sample server listens on port 4433 and uses a pre-shared key with identity
“pskclient.iaik.tugraz.at” to communicate with the client presented in the previous sec-
tion. To be able to simultaneously talk with any number of clients, each client request is
handled by a separate Thread. In this example we use PSK cipher suites with symmetric
key based authentication only.

import iaik.security.provider.IAIK;

import iaik.security.ssl.CipherSuite;

import iaik.security.ssl.CipherSuiteList;

import iaik.security.ssl.PSKCredential;

import iaik.security.ssl.PreSharedKey;

import iaik.security.ssl.SSLServerContext;

import iaik.security.ssl.SSLServerSocket;

import iaik.security.ssl.SSLSocket;

import java.io.IOException;

/**

 * Sample PSKServer using a pre-shared key with identity

 * "pskclient.iaik.tugraz.at" to held a psk cipher suite based

 * TLS session with client "pskclient.iaik.tugraz.at".

 */

public class PSKServer {

 // port number to listen on

 static int port_ = 4433;

 // server context

 private SSLServerContext serverContext_;

 /**

 * Creates a new PSK server.

 *

 * @param serverContext the configured server context

 */

 public PSKServer(SSLServerContext serverContext) {

 serverContext_ = serverContext;

 }

 PSK Cipher Suites – iSaSiLk

 Stiftung SIC – http://jce.iaik.tugraz.at 41

 /**

 * Starts the PSK Server.

 */

 public void start() {

 // create SSLServerSocket

 SSLServerSocket serverSocket;

 try {

 serverSocket = new SSLServerSocket(port_, serverContext_);

 } catch(IOException e) {

 System.err.println("Error binding to port " + port + ":");

 e.printStackTrace();

 return;

 }

 System.out.println("Listening for HTTPS connections on port " +

 port + "...");

 // for each request create a new Thread

 while (true) {

 try {

 SSLSocket socket = (SSLSocket)serverSocket.accept();

 (new PSKServerThread(socket)).start();

 } catch(IOException e) {

 e.printStackTrace(System.out);

 }

 }

 }

 /**

 * Main method. Configures and runs the server.

 */

 public static void main(String args[]) throws IOException {

 // add IAIK-JCE crypto provider

 IAIK.addAsProvider(true);

 PSK Cipher Suites – iSaSiLk

 Stiftung SIC – http://jce.iaik.tugraz.at 42

 // the server context

 SSLServerContext serverContext = new SSLServerContext();

 // the pre-shared key negotiated with the server out-of-band

 PreSharedKey psk = null;

 // create PSKCredential with identity "pskclient.iaik.tugraz.at"

 String identity = "pskclient.iaik.tugraz.at";

 PSKCredential credential = new PSKCredential(identity, psk);

 // enable psk credential

 serverContext.addPSKCredential(pskCredential);

 // enable PSK cipher suites (in this sample we want use

 // only symmetric key operations for authentication)

 CipherSuiteList suites = new CipherSuiteList();

 suites.add(CipherSuite.CS_PSK);

 serverContext.setEnabledCipherSuiteList(suites);

 serverContext.updateCipherSuites();

 // display configuration

 System.out.println("ServerContext:\n" + serverContext);

 // create and run the server

 PSKServer sslServer = new PSKServer(serverContext);

 sslServer.start();

 }

}

 PSK Cipher Suites – iSaSiLk

 Stiftung SIC – http://jce.iaik.tugraz.at 43

Class PSKServerThread is responsible for handling each client request:

import iaik.security.ssl.CipherSuite;

import iaik.security.ssl.SSLContext;

import iaik.security.ssl.SSLOutputStream;

import iaik.security.ssl.SSLSocket;

import iaik.security.ssl.Utils;

import java.io.BufferedReader;

import java.io.IOException;

import java.io.InputStream;

import java.io.OutputStream;

import java.io.PrintWriter;

import java.util.Enumeration;

import java.util.Vector;

/**

 * This class implements the server-side thread for handling a client

 * request. Each client request is handled by a separate thread which

 * sends back a HTML-page that simply dumps the client request.

 */

public class PSKServerThread extends Thread {

 // the Socket for communicating with the client

 private SSLSocket socket_;

 /**

 * Creates a new PSKServerThread.

 *

 * @param socket the socket to be used for communicating with the

 * client

 */

 public PSKServerThread(SSLSocket socket) {

 super("PSKServerThread");

 socket_ = socket;

 }

 /**

 PSK Cipher Suites – iSaSiLk

 Stiftung SIC – http://jce.iaik.tugraz.at 44

 * Handles a client request.

 */

 public void run() {

 try {

 System.out.println("Accepted connection from " +

 socket_.getInetAddress());

 // print debug-information to System.out:

 socket_.setDebugStream(System.out);

 socket_.setSoTimeout(1000*30);

 OutputStream os = socket_.getOutputStream();

 ((SSLOutputStream)os).setAutoFlush(false);

 InputStream is = socket_.getInputStream();

 BufferedReader reader = Utils.getASCIIReader(is);

 PrintWriter writer = Utils.getASCIIWriter(os);

 // read client request:

 Vector request = new Vector();

 System.out.println("Client Request:");

 while(true) {

 String line = reader.readLine();

 if((line == null) || (line.length() == 0)) {

 if (!reader.ready())

 break;

 }

 System.out.println(line);

 request.addElement(line);

 }

 // send response:

 System.out.println("Sending reply...");

 writer.println("HTTP/1.0 200 OK");

 writer.println("Content-Type: text/html");

 writer.println("Server: IAIK-SSL Demoserver");

 writer.println("Pragma: no-cache");

 writer.println("Cache-control: no-cache");

 writer.println();

 // create HTML page:

 writer.println("<HTML><HEAD><TITLE>SSLTest</TITLE></HEAD>");

 writer.println("<BODY><H1>TLS PSK Test ok.</H1>");

 PSK Cipher Suites – iSaSiLk

 Stiftung SIC – http://jce.iaik.tugraz.at 45

 CipherSuite suite = socket_.getActiveCipherSuite();

 writer.println("Active ciphersuite: <CODE>" + suite +

 "</CODE><P>");

 System.out.println("Active ciphersuite: " + suite);

 String version =

 Utils.getVersionString(socket_.getActiveProtocolVersion());

 writer.println("Active protocol version: " + version);

 System.out.println("Active protocol version: " + version);

 String pskIdentity = socket_.getPSKIdentity();

 if (pskIdentity != null) {

 writer.println("<P>PSK Identity: <CODE>" + pskIdentity +

 "</CODE><P>");

 System.out.println("PSK Identity: " + pskIdentity);

 }

 writer.println("<P>The request sent by your client was: " +

 "<BLOCKQUOTE><PRE>");

 for (Enumeration e = request.elements(); e.hasMoreElements();) {

 writer.println(e.nextElement());

 }

 writer.println("</PRE></BLOCKQUOTE><HR>Generated by " +

 "iSaSiLk ");

 writer.println(SSLContext.LIBRARY_VERSION_STRING +

 ".</BODY></HTML>");

 writer.flush();

 writer.close();

 } catch (IOException ex) {

 ex.printStackTrace();

 } finally {

 if (socket_ != null) {

 try {

 socket_.close();

 } catch (IOException e) {

 // ignore

 }

 }

 }

 }

}

 PSK Cipher Suites – iSaSiLk

 Stiftung SIC – http://jce.iaik.tugraz.at 46

7 Acronyms

AES Advanced Encryption Standard; Symmetric block cipher, designed by
Joan Daemen and Vincent Rijmen; NIST standardized successor of the
DES (Data Encryption Standard) cipher

DH Diffie-Hellman; public key algorithm; used for key exchange

DSA Digital Signature Algorithm; public-key digital signature algorithm,
standardized by the Digital Signature Standard (DSS)

HmacSHA256 Keyed-Hashing for Message Authentication as described in RFC 2104
using SHA-256 as message digest algorithm

PBKDF2 Password Based Key Derivation Function 2, specified in PKCS#5v2.0

PKCS#5 Password Based Encryption Standard (Public Key Cryptography Stand-
ard No. 5, by RSA Data Security Inc.)

PSK Pre-Shared Key (Symmetric key shared among two parties)

RSA Public-key algorithm, developed by Ron Rivest, Adi Shamir and Leon-
ard Adleman; may be used for data encryption or digital signing.

TLS Transport Layer Security; IETF standardaized successor of the SSL (Se-
cure Socket Layer) protocol

X.509 ITU-T (International Telecommunication Union) recommendation for an
authentication system and certificate syntax; profiled by the PKIX work-
ing group of the IETF

 PSK Cipher Suites – iSaSiLk

 Stiftung SIC – http://jce.iaik.tugraz.at 47

8 References

[IAIK-JCE] IAIK-JCE Provider, IAIK, Stiftung SIC, 2003, http://jce.iaik.tugraz.at

[JAVA] JavaTM Technology, Sun Microsystems, Inc., http://java.sun.com/

[JCA] JavaTM Cryptography Architecture API Specification & Reference,
SUN Microsystems, Inc.,

http://java.sun.com/j2se/1.4/docs/guide/security/CryptoSpec.html

[JCE] JavaTM Cryptography Extension (JCE) API Specification & Reference,
SUN Microsystems, Inc.,

http://java.sun.com/j2se/1.4.2/docs/guide/security/jce/JCERefGuide.html

[TLS] T. Dierks and C. Allen: "The TLS Protocol Version 1.0", RFC 2246,
January 1999.

T. Dierks and E. Rescorla, "The TLS Protocol, Version 1.1", RFC 4346,
April, 2006.

[PSK] P. Eronen, H. Tschofenig: "Pre-Shared Key Ciphersuites for Transport
Layer Security (TLS) ", RFC 4279, December 2005

[PSK-NULL] U. Blumenthal, P. Goel: "Pre-Shared Key (PSK) Ciphersuites with
NULL Encryption for Transport Layer Security (TLS) ", RFC 4785,
January 2007.

[UTF8] Yergeau, F., "UTF-8, a transformation format of ISO 10646", STD 63,
RFC 3629, November 2003.

