
 Stiftung SIC – http://jce.iaik.tugraz.at

TLS Extensions
iSaSiLk Version 6

 Stiftung SIC – http://jce.iaik.tugraz.at

Copyright © 2006-2019 Stiftung Secure Information and

 Communication Technologies SIC

Java™ and all Java-based marks are trademarks or registered trademarks of Oracle Cor-
poration in the U.S. and other countries

All rights reserved.

 TLS Extensions – iSaSiLk

 Stiftung SIC – http://jce.iaik.tugraz.at 3

Contents

1 INTRODUCTION .. 5

2 TLS EXTENSIONS ... 6

3 INSTALLATION ... 7

4 TLS EXTENSIONS AND ISASILK ... 9

4.1 THE ISASILK EXTENSION FRAMEWORK ... 9
4.2 ISASILK EXTENSION SURVEY .. 13

4.2.1 Server Name Indication ... 13
4.2.2 Maximum Fragment Length Negotiation ... 17
4.2.3 Client Certificate URLs ... 19
4.2.4 Trusted CA Indication .. 23
4.2.5 Truncated HMAC .. 26
4.2.6 Certificate Status Request .. 27

5 ACRONYMS .. 33

6 REFERENCES ... 34

 TLS Extensions – iSaSiLk

 Stiftung SIC – http://jce.iaik.tugraz.at 4

 TLS Extensions – iSaSiLk

 Stiftung SIC – http://jce.iaik.tugraz.at 5

1 Introduction
This manual describes how to use TLS extensions with the iSaSiLk TLS library. The
reader should have some knowledge about the basic principles of the Transport Layer Se-
curity ([TLS]) protocol and may have already used iSaSiLk for writing some simple cli-
ent/server applications with standard cipher suites.

This manual is organized as followed: the second chapter gives a short introduction into
the idea of TLS extensions; for a detailed description refer to the TLS extension specifi-
cation ([RFC 4366]) of the TLS working group. The third chapter provides a short instal-
lation guide of the iSaSiLk library. The final fourth chapter gives a detailed survey about
the extensions supported by iSaSiLk, based on many source code samples. A client-
server demo is included in the src/demo/extensions directory of your iSaSiLk dis-
tribution.

 TLS Extensions – iSaSiLk

 Stiftung SIC – http://jce.iaik.tugraz.at 6

2 TLS extensions
TLS extensions are defined in [RFC 4366]). They provide a general mechanism for ex-
tending the TLS protocol about security features that have to be negotiated at the begin-
ning of the TLS handshake.

Each extension is identified by a unique type number. If a client wants to use some par-
ticular extension(s) it starts the handshake by sending an extended ClientHello message
containing the numbers (and maybe additional information) of all extensions it wants to
use.

The server, after having parsed the extension list received from the client, responds with
an extended ServerHello message containing all those extensions the server is willing to
accept. The extension list of the server anytime has to be a subset of the extension list re-
ceived from the client. It may contain all extensions of the client list, but it cannot contain
more extensions than those got from the client; i.e. the server is not allowed to enable ex-
tensions that have not been suggested by the client. By exchanging the extended Hello
messages both client and server have to agree on the same set of extensions.

RFC 4366 itself specifies six standard extensions which are all supported by iSaSiLk1:

 Server Name Indication (type no. 0)

 Maximum Fragment Length Negotiation (type no. 1)

 Client Certificate URLs (type no. 2)

 Trusted CA Indication (type no. 3)

 Truncated HMAC (type no. 4)

 Certificate Status Request (type no. 5)

The Server Name Indication extension allows the client to specify which server name it
expects in the certificate of the server. The Maximum Fragment Length extension may be
negotiated to reduce the maximum TLS record fragment length for saving bandwidth.
Instead of sending his full certificate chain, the client may provide a list of Client Certifi-
cate URLs from which the server can download the client certificate(s). The Truncated
HMAC extension may be used to shorten the output size of the MAC calculation. And
finally, by sending a Certificate Status Request extension, the client may request that the
server provides a CertificateStatus message containing revocation status information
about the server certificate.

Each of the extensions above will influence the TLS handshake in a different way. Please
refer to the TLS extension specification ([RFC 4366]) for a detailed description of all ex-
tensions. Their usage with iSaSiLk is discussed in chapter 4 (TLS extensions and
iSaSiLk).

1 Note that this manual does not cover extensions that are not specified in RFC 4366. Examples are Rene-
gotiationInfo (RFC 5746), SupportedEllipticCurves and SupportedPointFormats (RFC 4492), SignatureAl-
gorithms (RFC 5246, TLS 1.2) or TLS 1.3 extensions like KeyShare (RFC 8446). See the iSaSiLk
Doc/JavaDoc and demo samples for more information.

 TLS Extensions – iSaSiLk

 Stiftung SIC – http://jce.iaik.tugraz.at 7

3 Installation
There are no specific installation requirements other than when using iSaSiLk in common
way without TLS extensions. All you need is a JavaTM ([JAVA]) runtime environment
(for instance JRE 1.2.x, 1.3.x, 1.4.x, 1.5.x, 1.6.x or 1.7.x).

After having downloaded (or received by CD) and unpacked the iSaSiLk distribution file
(iSaSiLk<version>.zip) you will find the following folder hierarchy in your local iSaSiLk
installation directory:

 docs: the Javadoc output

 lib: contains the iSaSiLk library files, iaik_ssl.jar + iaik_ssl_demo.jar
(the demo classes), w3c_http.jar (W3C Jigsaw based https library), and the
IAIK-JCE library files (iaik_jce.jar, signed and unsigned version2)

 manuals: contains additional manuals like the one you are currently reading

 demo/src: Source-Code of the iSaSiLk demo programs

 demo/lib: library jar files used by the demo programs

 demo/cmd: Windows batch files for running the iSaSiLk demos

 demo/sh: shell scripts for running the iSaSiLk demos on Linux

 images: logos, ...

For running iSaSiLk you will have to put the iaik_ssl.jar file into your classpath.
For the required cryptographic functionalities you will need a proper JCA/JCE ([JCA],
[JCE]) provider. Most appropriate you will use the IAIK-JCE ([IAIK-JCE]) provider
which is included in the iSaSiLk license. If not already done, get IAIK-JCE from the
SIC/IAIK web site at http://jce.iaik.tugraz.at (please see the IAIK-JCE installation notes
for specific JCA/JCE related requirements like provider registration/signing or key
strength checking).

If you now want to try the TLS extension client/server demo included in the
iaik_ssl_demo.jar file your classpath has to look like (assuming that all required
SIC/IAIK library files are included in a lib sub-folder of your current working directory):

> set cp=lib/iaik_jce.jar;lib/iaik_jce_demo.jar;lib/iaik_ssl.jar;

First you will have to start the TLS extension demo server contained in package
demo.extensions and then start the TLS extension client included in the same pack-
age:

2 Because of patent reasons iaik_jce.jar does not contain implementations of the IDEA, ESDH, RC5
and RC6 algorithms. You can download the full IAIK-JCE version (iaik_jce_full.jar) from the
SIC/IAIK web site http://jce.iaik.tugraz.at

 TLS Extensions – iSaSiLk

 Stiftung SIC – http://jce.iaik.tugraz.at 8

> java –cp %cp% demo.extensions.TLSExtensionsServer

> java –cp %cp% demo.extensions.TLSExtensionsClient

You also can go to the cmd/extensions or sh/extensions directory and run the
runTlsExtensionsServer.bat and runTlsExtensionsClient.bat batch
scripts, or the runTlsExtensionsServer.sh and runTlsExtensionsClient.sh
shell scripts, respectively.

 TLS Extensions – iSaSiLk

 Stiftung SIC – http://jce.iaik.tugraz.at 9

4 TLS extensions and iSaSiLk
After having installed iSaSiLk you are now ready to extend your iSaSiLk based
client/server applications about support for TLS extensions. This chapter will help you to
select which extensions may be suitable for your environment and how to configure and
use iSaSiLk with TLS extensions.

First we will describe the general extension framework of iSaSiLk and then we will
discuss each of the supported extensions in detail.

4.1 The iSaSiLk extension framework
The base class of all extensions is the abstract class Extension of package
iaik.security.ssl:

public abstract class Extension;

Any class that implements some particular TLS extension is derived from class
Extension. It defines the following basic properties that are available for each Exten-
sion object:

 The type of the extension

 The (type) name of the extension

 The critical specification of the extension

The type represents the type number that uniquely identifies some particular extension
(see section 2 – TLS Extensions). The name is a short name of the extension according to
the TLS extension specification ([RFC 4366]):

o Server Name Indication: server_name

o Maximum Fragment Length Negotiation: max_fragment_length

o Client Certificate URLs: client_certificate_url

o Trusted CA Indication: trusted_ca_keys

o Truncated HMAC: truncated_hmac

o Certificate Status Request: status_request

Extension type and name can be got from an Extension object by calling method
getExtensionType() (which wraps type and name), or immediately by calling
getType() or getName(), respectively:

 TLS Extensions – iSaSiLk

 Stiftung SIC – http://jce.iaik.tugraz.at 10

Listing 4-1: Querying an Extension object for type and name

The critical specification of an Extension is not a standard extension property. It is de-
fined by iSaSiLk to decide whether a TLS extension has to be treated as critical or not
critical. If an Extension object is marked as being critical, iSaSiLk will abort the hand-
shake if the peer does not include an extension of the same type into its extension list. For
instance, if you have configured your iSaSiLk client to send a server_name extension,
but the server does not respond with a server_name extension, the handshake will only
continue if you have marked your local (client-side) server_name extension as not crit-
ical, but will be aborted if you have classified it as being critical:

Listing 4-2: Marking an Extension object as being critical

In similar way, if you have configured your iSaSiLk server to support the server_name
extension, but the client does not send a server_name extension, the handshake will be
aborted if you have marked your local (server-side) server_name extension as critical.
Note that by default client-side extensions are classified as being critical (if you send a
particular extension to the server you may want that the server responds with an exten-
sion of the same type), but server-side extensions are treated as being not-critical (you tell
the server that it shall support some particular extension, but you may not insist on using
this extension if it is not suggested by the client). Use method setCritical as shown in
Listing 4-2 for changing the critical property of your extension.
Note also that the critical property of some particular extension may have some addition-
al meaning depending on the definition of the extension in mind (see the extension survey
of chapter 4.2 below).
So far we have learned that extensions are implemented as descendants of class
Extension and that we can specify if some particular extension has to be treated as crit-
ical or non critical. However, how can we tell an iSaSiLk client or server which exten-
sions it shall use? As you already might know an iSaSiLk client is configured by its
SSLClientContext, and an iSaSiLk server is configured by its SSLServerContext.
SSLClient- and SSLServerContext, respectively, contain all the TLS specific prop-
erties (like keys, certificates, supported ciphersuites, etc.) that are required to go into a
TLS session with the peer. For using TLS extensions you must configure your
SSLClient- or SSLServerContext with the specific extensions your client or server
wants to support. Extensions can be set for an SSLClient- or SSLServerContext ob-

Extension extension = ...;

extension.setCritical(true);

Extension extension = ...;

int type = extension.getType();

String name = extension.getName();

 TLS Extensions – iSaSiLk

 Stiftung SIC – http://jce.iaik.tugraz.at 11

jects by calling its setExtensions method and thereby specifying an ExtensionList
object containing all extensions that shall be enabled:

Listing 4-3: Adding extensions to an SSLClientContext

As you can see in the example of Listing 4-3 we have set the client-side protocol version
to TLS1.0. This is required since extensions are defined for the TLS protocol only (but
not for its SSL predecessor3).

3 If you have configured your SSLContext to send extensions, iSaSiLk will also send them if SSLv3 is used
(SSLv3 does not define extensions but allows to use it; therefor iSaSiLk will also parse extensions when
SSLv3 is used)

// create an ExtensionList object

ExtensionList extensionList = new ExtensionList();

...

// add any extensions

Extension extension = …;

extensionList.addExtension(extension);

...

// create SSLClientContext

SSLClientContext context = new SSLClientContext();

...

// extensions are only defined for TLS; set version to TLS1.0

context.setAllowedProtocolVersions(SSLContext.VERSION_TLS10,

 SSLContext.VERSION_TLS10);

...

// set extensions

context.setExtensions(extensionList);

...

// set keys, certificates, ciphersuites,…

...

// server name and port to connect to

String serverName = "...";

int serverPort = 443;

// create SSLSocket to connect to server

SSLSocket sslSocket = new SSLSocket(serverName, serverPort, context);

// proceed as usual

 TLS Extensions – iSaSiLk

 Stiftung SIC – http://jce.iaik.tugraz.at 12

Setting extensions on the server side is quite similar. However, use an
SSLServerContext instead of an SSLClientContext and an SSLServerSocket
instead of an SSLSocket:

Listing 4-4: Adding extensions to an SSLServerContext

Note that at the time you add the extensions to an SSLClient- or SSLServerContext
you already must have finished the extension configuration. Any changes that you make
later to your Extension objects, are not adopted by the Extension objects that have
been added to the SSLContext.
Class ExtensionList also provides methods for querying for or removing particular
extensions (see iSaSiLk Javadoc). However, in general you only will have to add exten-
sions and not to search for extensions or get information from extensions.

Now that we know how to add extensions to an iSaSiLk client- or server context, it is
time to have a deeper look at the extensions supported by iSaSiLk.

// create an ExtensionList object

ExtensionList extensionList = new ExtensionList();

...

// add any extensions

Extension extension = ...;

extensionList.addExtension(extension);

...

// create SSLServerContext

SSLServerContext serverContext = new SSLServerContext();

// set extensions

serverContext.setExtensions(extensionList);

...

// set keys, certificates, ciphersuites,…

...

// the port to listen on client connections

int port = 443;

// create SSLServerSocket to listen on client connections

SSLServerSocket serverSocket =

 new SSLServerSocket(port, serverContext);

// proceed as usual

...

 TLS Extensions – iSaSiLk

 Stiftung SIC – http://jce.iaik.tugraz.at 13

4.2 iSaSiLk extension survey
As already mentioned in chapter 2 iSaSiLk supports all standard extensions defined by
RFC 2546:

o Server Name Indication: server_name

o Maximum Fragment Length Negotiation: max_fragment_length

o Client Certificate URLs: client_certificate_url

o Trusted CA Indication: trusted_ca_keys

o Truncated HMAC: truncated_hmac

o Certificate Status Request: status_request

Depending on the iSaSiLk version you have got, it may also support additional exten-
sions (like the SessionTicket extension specified in [RFC 4507]). However, this manual
only explains the standard extensions specified by the TLS extension specification
([RFC 4366]) itself. Other extensions may be described in different manuals.
For each extension, the following discussion is grouped into three sections. First we give
a brief introduction into the syntax and meaning of the extension itself. Subsequently we
describe how the extension has to be configured and used on the client side, and finally
we explain how it has to be used on the server side.
Note that this is mainly a user manual that shall help you to quickly get familiar with the
iSaSiLk extension library. It does not describe all features and options that are provided
by particular extension implementations (please refer to the iSaSiLk Javadoc for a de-
tailed discussion), however, it covers the most common use cases.
For some extensions it only may be necessary to add the representing Extension ob-
jects to the ExtensionList. However, other extensions may require some additional
configuration settings as described in the extension survey below.

4.2.1 Server Name Indication
Often it might be necessary to run multiple virtual servers at the same machine or ip ad-
dress. Each virtual server may be addressed by a different name, and depending on to
which server (name) the client actually is connecting to, a different certificate may have
to be presented within the Certificate handshake message. When name-based virtual host-
ing is used several servers share the same ip address. It is the responsible of the applica-
tion protocol (e.g. http) to direct the client request to the right virtual server (for instance,
by looking at the value of the "Host"-header field of the http client request).

However, server authentication already has to take place during the TLS handshake and
without having access to any application data. So far the TLS handshake protocol did not
provide any functionality to let the server know which server name is expected to be con-
tained into its certificate. With the Server Name Indication (server_name) extension
now the client is able to provide server name information already within the ClientHello
message. The server_name extension contains a list of server names that may be used

 TLS Extensions – iSaSiLk

 Stiftung SIC – http://jce.iaik.tugraz.at 14

by the server to select a proper certificate. If the server receives a server_name exten-
sion he includes an empty server_name extension into his extended ServerHello mes-
sage indicating that he has recognized the server_name extension sent by the client.

4.2.1.1 Client Side
The Server Name Indication is implemented by iSaSiLk class ServerNameList. For
each server name you want announce to the server you will have to create a ServerName
object and add it to your ServerNameList extension object. Subsequently add the
ServerNameList to the extension list you set for your SSLClientContext. For in-
stance, if you want to tell the server that you will accept the two server names
"jce.iaik.tugraz.at" and "jce.iaik.at" add two ServerName objects to your server name
list:

Listing 4-5: Client-side server name configuration

However, it is not necessary to explicitly specify the server name(s) when creating the
server name list. If you specify an empty ServerNameList, iSaSiLk tries to get the
server name from the underlying transport layer. For instance, in the following example
where you connect to server "jce.iaik.tugraz.at", iSaSiLk gets the server name
("jce.iaik.tugraz.at") from the SSLSocket transport object and sends it within its server
name list in the extended ClientHello message:

// create ServerNameList

ServerName[] serverNames = { new ServerName("jce.iaik.tugraz.at"),

 new ServerName("jce.iaik.at") };

ServerNameList serverNameList = new ServerNameList(serverNames);

// add to ExtensionList

ExtensionList extensions = new ExtensionList();

...

extensions.addExtension(serverNameList);

...

// set extensions for the SSLClientContext configuration:

SSLClientContext clientContext = new SSLClientContext();

...

clientContext.setExtensions(extensions);

...

 TLS Extensions – iSaSiLk

 Stiftung SIC – http://jce.iaik.tugraz.at 15

Listing 4-6: Let iSaSiLk get the server name from the transport layer

As you already know all extensions by default are marked as critical on the client side.
This means that if you send a Server Name Indication extension to the server, but the
server does not send back a Server Name Indication extension or sends an "unrecog-
nized_name" warning alert, iSaSiLk will abort the handshake and send an
internal_error alert to the server. It also means that your iSaSiLk client will reject
the server certificate if it does not contain any of the suggested server names, provided
that you don’t have disabled certificate checking by disabling the ChainVerifier or
overriding the ChainVerifier method verifyServer in a way to do not check the
certificate server name(s) against the Server Name Indication extension.
If the server sends an "unrecognized_name" fatal alert, the handshake will be aborted in
any case, regardless if the Server Name Indication extension is configured as critical or
not critical.

4.2.1.2 Server side
On the server side it is only necessary to configure iSaSiLk to support the Server Name
Indication extension. Just add an empty ServerNameList extension object to the exten-
sion list of your SSLServerContext:

// create empty ServerNameList

ServerNameList serverNameList = new ServerNameList();

// add to ExtensionList

ExtensionList extensions = new ExtensionList();

...

extensions.addExtension(serverNameList);

...

// set extensions for the SSLClientContext configuration:

SSLClientContext clientContext = new SSLClientContext();

...

clientContext.setExtensions(extensions);

...

// the host name of the server to connect to

String hostName = "jce.iaik.tugraz.at";

// the server port

int port = 443;

// create Socket

SSLSocket socket = new SSLSocket(hostName, port, clientContext);

...

 TLS Extensions – iSaSiLk

 Stiftung SIC – http://jce.iaik.tugraz.at 16

Listing 4-7: Enabling Server Name Indication extension support on the server side

Server-side extensions are not critical by default. Setting your ServerNameList exten-
sion object to critical would mean that iSaSiLk would abort the handshake if the client
does not send a server name list.
When getting a server name list from the client the iSaSiLk server will search its server
credentials for a proper certificate. Thereby iSaSiLk tries to calculate the server names
from the SubjectAltName extension, Netscape SSLServerName extension or subject DN
common name of its server certificates. You may help iSaSiLk to determine the server
name(s) associated with a certificate by explicitly specifying them for your server
KeyAndCerts, e.g.:

Listing 4-8: Explicitly specifying the TLS server name(s) of your server credentials

// the cert chain of the server running at "jce.iaik.tugraz.at"

X509Certificate[] certChain = ...;

// the private key of the server

PrivateKey key = ...;

// create server credentials

KeyAndCert serverCredentials = new KeyAndCert(certChain, key);

// explicitly set server name(s)

ServerName[] serverNames = { new ServerName("jce.iaik.tugraz.at") };

serverCredentials.setTLSServerNames(serverNames);

// add credentials to your SSLServerContext

SSLServerContext serverContext = new SSLServerContext();

// create empty ServerNameList

ServerNameList serverNameList = new ServerNameList();

// add to ExtensionList

ExtensionList extensions = new ExtensionList();

...

extensions.addExtension(serverNameList);

...

// set extensions for the SSLServerContext configuration:

SSLServerContext serverContext = new SSLServerContext();

...

serverContext.setExtensions(extensions);

 TLS Extensions – iSaSiLk

 Stiftung SIC – http://jce.iaik.tugraz.at 17

4.2.2 Maximum Fragment Length Negotiation
In constrained environments it may be desirable to use a shorter maximum fragment
length than the TLS default value of 214 (16384) bytes. If the client plans to use a smaller
fragment length it includes a max_fragment_length extension into the extended Cli-
entHello message. The max_fragment_length extension has to announce the new
maximum fragment length value (either 29 (512), 210 (1024), 211 (2048) or 212 (4096)
bytes) the client wants to use. If the server agrees to use a shorter maximum fragment
length he sends back an empty max_fragment_length extension.

4.2.2.1 Client side
The max_fragment_length extension is implemented by iSaSiLk class
MaxFragmentLength. When creating a MaxFragmentLength extension object on the
client side you have to specify the new maximum fragment value you want to use by re-
ferring one of the following static variables:

 MaxFragmentLength.L_512 for using 29 (512) bytes

 MaxFragmentLength.L_1024 for using 210 (1024) bytes

 MaxFragmentLength.L_2048 for using 211 (2048) bytes

 MaxFragmentLength.L_4096 for using 212 (4096) bytes

In the following example the client suggests to use a new maximum fragment length val-
ue of 210 (1024) bytes:

// we want to use a max fragment length of 2^10 (1024)

int maxLen = MaxFragmentLength.L_1024;

// create MaxFragmentLength

MaxFragmentLength maxFragmentLength = new MaxFragmentLength(maxLen);

// add to ExtensionList

ExtensionList extensions = new ExtensionList();

...

extensions.addExtension(maxFragmentLength);

...

// set extensions for the SSLClientContext configuration:

SSLClientContext clientContext = new SSLClientContext();

...

clientContext.setExtensions(extensions);

...

 TLS Extensions – iSaSiLk

 Stiftung SIC – http://jce.iaik.tugraz.at 18

Listing 4-9: The MaxFragmentLength extension has to contain the suggested max fragment value

Again the client-side MaxFragmentLength extension is critical by default meaning that
the handshake will be aborted if the server does not send back a MaxFragmentLength
extension. However, using a non-critical MaxFragmentLength extension does not make
any sense. A client that suggests to use a shorter maximum fragment length will run in a
constrained environment and therefore may fail if the server ignores the extension and
continues to use the default TLS maximum fragment length.
Regardless of having a critical or non-critical MaxFragmentLength extension, the
handshake will be aborted with an illegal_parameter alert if the server sends back a
different maximum fragment length value than that suggested by the client.

4.2.2.2 Server side
On the server side it is only necessary to configure iSaSiLk to support the
max_fragment_length extension. Just add an empty MaxFragmentLength extension
object to the extension list of your SSLServerContext:

Listing 4-10: Enabling MaxFragmentLength extension support on the server side

Server-side extensions are not critical by default. Setting your MaxFragmentLength
extension object to critical would mean that iSaSiLk would abort the handshake if the
client does not send MaxFragmentLength extension.
Regardless of having a critical or non-critical MaxFragmentLength extension, the
handshake will be aborted with an illegal_parameter alert if the client suggests an
illegal maximum fragment length value (not 29 (512), 210 (1024), 211 (2048) or 212
(4096)).

// create empty MaxFragmentLength

MaxFragmentLength maxFragmentLength = new MaxFragmentLength();

// add to ExtensionList

ExtensionList extensions = new ExtensionList();

...

extensions.addExtension(maxFragmentLength);

...

// set extensions for the SSLServerContext configuration:

SSLServerContext serverContext = new SSLServerContext();

...

serverContext.setExtensions(extensions);

...

 TLS Extensions – iSaSiLk

 Stiftung SIC – http://jce.iaik.tugraz.at 19

4.2.3 Client Certificate URLs
In a constrained environment a client may not be able to store the certificates it has to use
if the server insists on client authentication. By sending an (empty)
client_certificate_url extension the client indicates that it will not provide a
Certificate message if the server requests that the client has to authenticate himself.

If the server agrees on using client certificate URLs the client will send a CertificateURL
message (in place of the Certificate message) containing a list of URLs from where the
server can download the client certificates. More precisely the CertificateURL message
will contain a list of one or more of so-called UrlAndOptionalHash objects (see [RFC
4366]). Whether one or more UrlAndOptionalHash objects are included depends on
the certChainType of the CertificateURL message, which may be pkipath or
individual_certs. A pki path collects all client certificates together into an ASN.1
object and therefore requires only one single UrlAndOptionalHash object that points
to the location from where the pki path can be obtained. When using cert chain type
individual_certs you will need as many UrlAndOptionalHash objects as certifi-
cates are included in the client certificate chain. In this case each of the
UrlAndOptionalHash objects will refer to one different certificate of the client certifi-
cate chain.

Regardless of using cert chain type pkipath or individual_certs the top level cer-
tificate of the client certificate chain may not be included in the UrlAndOptionalHash
reference(s). The server may get it by other means to use it as trust anchor for the client
certificate chain.

Note also that the certificates contained in a pki path are ordered in a way that the client
(end) certificate is located at index [n-1] (where n is the number of certificates included in
the pki path). This is reverse to the certificate chain order expected by TLS where the cli-
ent certificate has to be located at index [0]. The URLAndOptionalHash objects of a
CertificateMessage of type individual_certs, however, refer the certificates in TLS
compliant way with the client certificate at index [0].

The optional hash of an URLAndOptionalHash object is a SHA-1 hash calculated over
a DER encoded individual certificate or over the DER encoding of the entire pki path,
respectively. If included, the server has to compare the hash value to one calculated over
the DER encoded certificate or pki path got from the referenced URL. This check will
prove that the certificates downloaded from the given URL(s) actually match to those in-
dicated by the included hash value(s).

4.2.3.1 Client Side
The client announces the usage of certificate URLs by sending an empty
client_certificate_url extension. Thus use the empty default constructor for cre-
ating a ClientCertificateURL extension object on the client side:

 TLS Extensions – iSaSiLk

 Stiftung SIC – http://jce.iaik.tugraz.at 20

Listing 4-11: The client sends an empty ClientCertificateURL extension

By default the ClientCertificateURL extension is critical on the client side. Thus
the handshake will be aborted if the server does not respond with a
ClientCertificateURL extension if it has one received from the client.

When adding the ClientCertificateURL extension to the extension list of your
SSLClientContext iSaSiLk knows that it shall send client certificate URLs instead of cer-
tificates. However, iSaSiLk does not know which URLs (or URLAndOptionalHash list)
should be sent within the CertificateURL handshake message.
Usually you add client credentials as KeyAndCert objects to your SSLClientContext to
tell iSaSiLk which keys and certificates shall be used for client authentication:

Listing 4-12: Client credentials are usually provided as KeyAndCert objects

If you want to use client certificate urls you must specify your client credentials as in-
stances of class KeyAndCertURL. Like a KeyAndCert object a KeyAndCertURL object

// the cert chain of the client

X509Certificate[] certChain = ...;

// the private key of the client

PrivateKey key = ...;

// create client credentials

KeyAndCert clientCredentials = new KeyAndCert(certChain, key);

// add credentials to your SSLClientContext

SSLClientContext clientContext = new SSLClientContext();

clientContext.addClientCredentials(clientCredentials);

// create empty ClientCertificateURL

ClientCertificateURL clientCertURL = new ClientCertificateURL();

// add to ExtensionList

ExtensionList extensions = new ExtensionList();

...

extensions.addExtension(clientCertURL);

...

// set extensions for the SSLClientContext configuration:

SSLClientContext clientContext = new SSLClientContext();

...

clientContext.setExtensions(extensions);

...

 TLS Extensions – iSaSiLk

 Stiftung SIC – http://jce.iaik.tugraz.at 21

also will hold a private key of the client. However, instead of containing the client certifi-
cate chain, it only will refer it by means of URLAndOptionalHash object(s).
For convenience class KeyAndCertURL provides a constructor that can be featured with
certificate and URL values to automatically calculate the required
URLAndOptionalHash objects. However, client certificate urls are intended for use on
constrained clients where the certificates may not be available. Thus you first will have to
create the URLAndOptionalHash object(s) from the URL(s) that refer to the client cer-
tificate(s). If you want to include the hash value(s) of the referred individual certificates
or pki path, you already will have calculated it on another, not constrained platform.
When finally creating the KeyAndCertURL object from the URLAndOptionalHash list
also provide the private key of the client and the cert chain type (pki_path or
individual_certs) of the CertificateURL message to be sent. Furthermore you will
have to specify if the client certificate shall be used for RSA signing, DSA signing, or
RSA or DSA based DH key exchange (see Javadoc). This information is later used to
check if the KeyAndCertURL is appropriate for the certificate types the server may sent
within its CertificateRequest message.

Listing 4-13: Creating Client credentials as KeyAndCertURL of cert chain type pki_path

// URLAndOptionalHash referring a pki path with the client certs

String pkiPathUrl = ...;

URLAndOptionalHash pkiPathUrlAndHash =

 new URLAndOptionalHash(pkiPathUrl);

// optional hash calculated over the DER encoded pki path

byte[] pkiPathHash = ...;

pkiPathUrlAndHash.setHash(pkiPathHash);

// create URLAndOptionalHash list containing one element:

URLAndOptionalHash[] urlAndOptionalHashList = { pkiPathUrlAndHash };

// create client credentials (certificate type is RSA_SIGN)

int certType = SSLContext.CERTTYPE_RSA_SIGN;

// the private key of the client:

PrivateKey privateKey ...;

// cert chain type is pki_path:

int certChainType = KeyAndCertURL.CHT_PKI_PATH;

// create KeyAndCertURL

KeyAndCertURL clientCredentials =

 new KeyAndCertURL(certType, privateKey, certChainType,

 urlAndOptionalHashList);

// add credentials to your SSLClientContext

SSLClientContext clientContext = new SSLClientContext();

clientContext.addClientCredentials(clientCredentials);

 TLS Extensions – iSaSiLk

 Stiftung SIC – http://jce.iaik.tugraz.at 22

The example of Listing 4-13 creates a KeyAndCertURL object with chain type
pki_path containing for an RSA signing key and referring to an URL from where the
client certificate chain can be obtained.
However, if each certificate of the client chain is referenced by a different URL you will
have to use cert chain type individual_certs and create one separate
URLAndOptionalHash object for each certificate you have to refer to. For instance, if
the client certificate chain consists of three certificates, you will have to create an
URLAndOptionalHash list that consists of two elements pointing to the client end cer-
tificate and the intermediate CA certificate of the chain (the self-signed top level CA cer-
tificate may not be referenced since it has to be obtained by the server by other means):

Listing 4-14: Creating Client credentials as KeyAndCertURL of cert chain type individual_certs

// URLAndOptionalHash for client cert url

String clientCertUrl = ...;

URLAndOptionalHash clientUrlAndHash =

 new URLAndOptionalHash(clientCertUrl);

// optional hash calculated over the DER encoded client cert

byte[] clientCertHash = ...;

clientUrlAndHash.setHash(clientCertHash);

// URLAndOptionalHash for intermediate ca cert url

String caCertUrl = ...;

URLAndOptionalHash caUrlAndHash =

 new URLAndOptionalHash(caCertUrl);

// optional hash calculated over the DER encoded ca cert

byte[] caCertHash = ...;

caUrlAndHash.setHash(caCertHash);

// create URLAndOptionalHash list containing two elements:

URLAndOptionalHash[] urlAndOptionalHashList =

 { clientUrlAndHash, caUrlAndHash };

// create client credentials (certificate type is RSA_SIGN)

int certType = SSLContext.CERTTYPE_RSA_SIGN;

// the private key of the client:

PrivateKey privateKey ...;

// cert chain type is individual_certs:

int certChainType = KeyAndCertURL.CHT_INDIVIDUAL_CERTS;

// create KeyAndCertURL

KeyAndCertURL clientCredentials =

 new KeyAndCertURL(certType, privateKey, certChainType,

 urlAndOptionalHashList);

...

 TLS Extensions – iSaSiLk

 Stiftung SIC – http://jce.iaik.tugraz.at 23

4.2.3.2 Server Side
On the server side it is only necessary to configure iSaSiLk to support the
client_certificate_url extension. Just add an empty ClientCertificateURL
extension object to the extension list of your SSLServerContext:

Listing 4-15: Enabling ClientCertificateURL extension support on the server side

Server-side extensions are not critical by default. Setting your
ClientCertificateURL extension object to critical would mean that iSaSiLk would
abort the handshake if the client does not send a ClientCertificateURL extension.
If the server is not able to download the client certificates from the referenced URLs it
will send a certificate_unobtainable alert; if the any of the hash comparison
checks will fail the server will abort the handshake and send a
bad_certificate_hash_value alert (see [RFC 4366]).

4.2.4 Trusted CA Indication
The Trusted CA Indication (trusted_ca_keys) extension gives the client the possibil-
ity to tell the server which ca keys the client is willing to trust. The server may use this
information to select a proper certificate when authenticating itself to the client. This
practice may reduce the number of handshake trials and maybe useful for constrained cli-
ents that do not want to maintain a large number of trust anchor certificates.

Within its extended ClientHello message the client sends a list of trusted authorities to the
server. The trusted authorities list may reference the ca keys by a prior agreement (in this
case no further information is required), by a SHA-1 hash of the ca public key, by the
DER encoded distinguished name of the ca, or by a SHA-1 hash of the DER encoded CA
certificate. The server confirms to use the information provided by the client by sending
back an empty trusted authorities list.

// create empty ClientCertificateURL

ClientCertificateURL clientCertURL = new ClientCertificateURL();

// add to ExtensionList

ExtensionList extensions = new ExtensionList();

...

extensions.addExtension(clientCertURL);

...

// set extensions for the SSLServerContext configuration:

SSLServerContext serverContext = new SSLServerContext();

...

serverContext.setExtensions(extensions);

...

 TLS Extensions – iSaSiLk

 Stiftung SIC – http://jce.iaik.tugraz.at 24

4.2.4.1 Client Side
The trusted_ca_keys extension is implemented by class TrustedAuthorities
which represents the main structure of the trusted_ca_keys extension (see [RFC
4366]). When creating the TrustedAuthorities list to be sent to the server, the client
has to decide which identifier type it wants to use:

 TrustedAuthority.ID_PRE_AGREED: prior agreement between client and server

 TrustedAuthority.ID_KEY_SHA1_HASH: SHA-1 hash of the CA public key

 TrustedAuthority.ID_X509_NAME: DER encoded distinguished name of the CA

 TrustedAuthority.ID_CERT_SHA1_HASH: SHA-1 hash of the DER encoded CA
certificate

You may explicitly create a TrustedAuthority object for any trusted CA you want to
reference in the TrustedAuthorities list. Or – more simply – you may only specify
the identifier type to be used and let iSaSiLk itself calculate the required
TrustedAuthority elements from the trust anchor certificates you have set for your
client ChainVerifier:

Listing 4-16: Client side TrustedAuthorities extension configuration

// the identifier type to be used:

int idType = TrustedAuthority.ID_CERT_SHA1_HASH

// create TrustedAuthorities list for the requestd identifier type

TrustedAuthorities trustedAuthorities =

 new TrustedAuthorities(idType);

// add to ExtensionList:

ExtensionList extensions = new ExtensionList();

...

extensions.addExtension(trustedAuthorities);

...

// create SSLClientContext:

SSLClientContext clientContext = new SSLClientContext();

...

// add any trust anchors

X509Certificate trustedCert = ...;

clientContext.addTrustedCertificate(trustedCert);

...

// set extensions

clientContext.setExtensions(extensions);

...

 TLS Extensions – iSaSiLk

 Stiftung SIC – http://jce.iaik.tugraz.at 25

In the example of Listing 4-16 we use the TrustedAuthority identifier type
cert_sha1_hash. This means that iSaSiLk will calculate a SHA-1 hash of the DER en-
coding of any of the trusted CA certificates and adds a TrustedAuthority object con-
taining this hash to the TrustedAuthorities list. Since cert_sha1_hash is the de-
fault identifier type used by iSaSiLk you will get the same result when creating your
TrustedAuthorities list by means of its default constructor. Note that iSaSiLk will
calculate the trusted authorities when you add the extension list to your SSLClientCon-
text. Thus any trust anchors must have been already set at this time. If no trusted CA cer-
tificates are set iSaSiLk does not send a TrustedAuthorities list to the server.
As you may know iSaSiLk tries to be crypto provider-independent where possible. How-
ever, calculating TrustedAuthority identifiers in provider independent way can only be
done for the identifier types pre_agreed, cert_sha1_hash and (partially)
key_sha1_hash. Distinguished names cannot be handled generally and a
key_sha1_hash identifier can be only calculated for RSA keys (because some ASN.1
processing is required for calculating the ids of other key types). However, this all is no
problem if you are using iSaSiLk with the IAIK-JCE provider which is enabled by de-
fault and supports all identifier types. If you are using a different crypto provider you
may customize the iSaSiLk SecurityProvider by overriding its method
calculateTrustedAuthorityIdentifier (see the Javadoc and
SecurityProvider documentation included in the iSaSiLk distribution).

As all client-side extensions, the TrustedAuthorities extension is critical on the cli-
ent side by default. This means that the handshake will be aborted if the server does not
send back a TrustedAuthorities extension.

4.2.4.2 Server Side
On the server side it is only necessary to configure iSaSiLk to support the
trusted_ca_keys extension. Just add an empty TrustedAuthorities object to the
extension list of your SSLServerContext:

Listing 4-17: Enabling TrustedAuthorities extension support on the server side

// create empty TrustedAuthorities

TrustedAuthorities authorities = new TrustedAuthorities();

// add to ExtensionList

ExtensionList extensions = new ExtensionList();

extensions.addExtension(authorities);

...

// set extensions for the SSLServerContext configuration:

SSLServerContext serverContext = new SSLServerContext();

...

serverContext.setExtensions(extensions);

 TLS Extensions – iSaSiLk

 Stiftung SIC – http://jce.iaik.tugraz.at 26

Server-side extensions are not critical by default. Setting your TrustedAuthorities
extension object to critical would mean that iSaSiLk would abort the handshake if the
client does not send a TrustedAuthorities extension.

4.2.5 Truncated HMAC
The Truncated HMAC extension allows to save bandwidth by truncating the output size
of the MAC calculation to 80 bits. For using truncated HMACs client and server have to
exchange empty Truncated HMAC extensions within their ClientHello and ServerHello
messages, respectively.

4.2.5.1 Client Side
A client that wants to use truncated HMACs includes an empty TruncatedHMAC exten-
sion into the extension list of his extended ClientHello message:

Listing 4-18: Adding a TruncatedHMAC extension to your client extension list

By default a client-side TruncatedHMAC extension is considered as critical. This means
that the handshake will be aborted if the client sends a TruncatedHMAC extension but
the server does not respond with a TruncatedHMAC extension.

4.2.5.2 Server Side
On the server side enable support for Truncated HMACs by adding an empty
TruncatedHMAC extension to your extension list:

// create empty TruncatedHMAC

TruncatedHMAC truncatedHMAC = new TruncatedHMAC();

// add to ExtensionList

ExtensionList extensions = new ExtensionList();

...

extensions.addExtension(truncatedHMAC);

...

// set extensions for the SSLClientContext configuration:

SSLClientContext clientContext = new SSLClientContext();

...

clientContext.setExtensions(extensions);

 TLS Extensions – iSaSiLk

 Stiftung SIC – http://jce.iaik.tugraz.at 27

Listing 4-19: Enabling TruncatedHMAC extension support on the server side

Server-side extensions are not critical by default. Setting your TruncatedHMAC exten-
sion object to critical would mean that iSaSiLk would abort the handshake if the client
does not send a TruncatedHMAC extension.

4.2.6 Certificate Status Request
A client may send a Certificate Status Request extension to save resources when getting
status information about the server certificate. When the server receives a certificate sta-
tus request from the client (and confirms on using it) he may send a CertificateStatus
message immediately after his Certificate message. The CertificateStatus message con-
tains status information about the server certificate. This relieves the client from the task
to obtain the server certificate status information from some other source.

The Certificate Status Request extension is not bound to a particular status type. Howev-
er, most commonly the Online Certificate Status Protocol ([OCSP]) will be used for
providing revocation status information about the server certificate. OCSP currently is
also the only predefined status type specified for the Certificate Status Request extension
(see [RFC 4366]).

When the client sends an OCSP Certificate Status Request extension to the server it may
include the IDs of accepted OCSP responders, and any number of request extensions (like
for instance a Nonce extension to protect against replay attacks). The format of responder
IDs and request extensions are specified by the [OCSP] standard.

If responder IDs are included in the OCSP Certificate Status Request extension, they may
guide the server when selecting an OCSP responder for getting certificate revocation in-
formation about his certificate. However, most usually the server may only contact one
OCSP responder for getting status information, thus including responder IDs in the Cer-
tificate Status Request extension may not be required. Any request extensions contained
in an OCSP Certificate Status Request extension will be passed further to the OCSP re-
sponder.

// create empty TruncatedHMAC

TruncatedHMAC truncatedHMAC = new TruncatedHMAC();

// add to ExtensionList

ExtensionList extensions = new ExtensionList();

extensions.addExtension(truncatedHMAC);

...

// set extensions for the SSLServerContext configuration:

SSLServerContext serverContext = new SSLServerContext();

...

serverContext.setExtensions(extensions);

 TLS Extensions – iSaSiLk

 Stiftung SIC – http://jce.iaik.tugraz.at 28

The following client-server discussion assumes that you want to send an OCSP certificate
status request and that you are using IAIK-JCE as underlying cryptographic provider.
IAIK-JCE is enabled by default. iSaSiLk allows to use the Certificate Status Request ex-
tension with other crypto providers, too. However, in this case you must implement and
plug-in the required status request and status response en/decoding and processing classes
since OCSP cannot be handled in crypto provider independent way.

4.2.6.1 Client Side
The simplest way for instructing iSaSiLk to send an OCSP Certificate Status Request ex-
tension is to create and add an empty CertificateStatusRequest extension object
to the extension list of your client:

Listing 4-20: Instructing iSaSiLk to request OCSP certificate status information from the server

By adding an empty CertificateStatusRequest extension object to the extension
list of your client you tell iSaSiLk to send a Certificate Status Message of type OCSP to
the server. To protect against replay attacks iSaSiLk automatically will add a Nonce re-
quest extension to the status request. If you want to include any further (or other) request
extensions or responder IDs into the request message, you will have to explicitly create
and set an OCSPStatusRequest when creating the CertificateStatusRequest
extension object (see the iSaSiLk Javadoc for detailed information):

// create empty CertificateStatusRequest extension

CertificateStatusRequest certStatusRequest =

 new CertificateStatusRequest();

// add to ExtensionList

ExtensionList extensions = new ExtensionList();

...

extensions.addExtension(certStatusRequest);

...

// set extensions for the SSLClientContext configuration:

SSLClientContext clientContext = new SSLClientContext();

...

clientContext.setExtensions(extensions);

...

 TLS Extensions – iSaSiLk

 Stiftung SIC – http://jce.iaik.tugraz.at 29

Listing 4-21: Explicitly creating an OCSP certificate status request

By default a client-side CertificateStatusRequest extension is marked as being
critical. This means that the handshake will be aborted if the server does not send back a
CertificateStatusRequest extension. The handshake will also be aborted if the
server does not provide a Certificate Status message containing status information about
the server certificate.

Till now we only have configured our iSaSiLk client to request status information from
the server. However, we also must take care that the iSaSiLk client actually verifies the
status information provided from the server. For that purpose we use an instance of
OCSPCertStatusChainVerifier instead of the standard iSaSiLk ChainVerifier
for server certificate chain verification. The OCSPCertStatusChainVerifier works
in the same way as the standard iSaSiLk ChainVerifier, except that it uses the OCSP
status information sent by the server for checking the revocation status of the server cer-
tificate:

// the responder IDs to be announced to the server

ResponderID[] responderIDs = ...;

// request extensions

OCSPExtensions requestExtensions = ...;

// create OCSPStatusRequest

OCSPStatusRequest ocspStatusRequest = new

 OCSPStatusRequest(responderIDs, requestExtensions);

// create CertificateStatusRequest extension of type ocsp:

CertificateStatusRequest certStatusRequest =

 new CertificateStatusRequest(OCSPStatusRequest.STATUS_TYPE,

 ocspStatusRequest.getEncoded());

// add to ExtensionList

ExtensionList extensions = new ExtensionList();

...

extensions.addExtension(certStatusRequest);

...

// set extensions for the SSLClientContext configuration:

SSLClientContext clientContext = new SSLClientContext();

...

clientContext.setExtensions(extensions);

...

 TLS Extensions – iSaSiLk

 Stiftung SIC – http://jce.iaik.tugraz.at 30

Listing 4-22: Use an OCSPCertStatusChainVerifier for verifying status information from the server

If you expect that you have to verify status responses coming from a delegated OCSP re-
sponder (where the signer of the OCSP response is different from the signer of the server
certificate), you may want to check if the responder is authorized to sign an OCSP re-
sponse for the server certificate. According to the OCSP specification ([OCSP]) it is re-
quired that the signer certificate of a delegated OCSP responder contains an Extend-
edKeyUsage extension of type ocspSigning and must be signed by the same CA certif-
icate that has issued the (server) certificate for which status information is provided.
If you want that the OCSP cert status chain verifier checks responder authorization, you
may configure it with trusted responder information. Just add a TrustedResponders
object to your OCSPCertStatusChainVerifier. For each responder you want to
check add an entry to the TrustedResponders telling that the referenced responder is
authorized by the given CA certificate for signing OCSP responses on behalf of this CA:

Listing 4-23: Adding trusted responders to the OCSP cert status chain verifier

// server certificate chain

X509Certificate[] serverCerts = ...;

// OCSP responder certificate

X509Certificate responderCert = ...;

TrustedResponders trustedResponders = new TrustedResponders();

ResponderID responderID =

 new ResponderID((Name)responderCert.getSubjectDN());

trustedResponders.addTrustedResponderEntry(responderID,

 serverCerts[1]);

// add to ChainVerifier

OCSPCertStatusChainVerifier chainVerifier =

 new OCSPCertStatusChainVerifier();

...

chainVerifier.setTrustedResponders(trustedResponders);

// create an OCSPCertStatusChainVerifier:

OCSPCertStatusChainVerifier chainVerifier =

 new OCSPCertStatusChainVerifier();

...

// set OCSPCertStatusChainVerifier for the SSLClientContext:

SSLClientContext clientContext = new SSLClientContext();

...

clientContext.setChainVerifier(chainVerifier);

 TLS Extensions – iSaSiLk

 Stiftung SIC – http://jce.iaik.tugraz.at 31

In the example of Listing 4-23 we configure the OCSP cert status chain verifier to accept
the given responder as being authorized for signing OCSP responses for certificates is-
sued by the server certificate issuer (i.e. the CA certificate contained in
serverCerts[1]).

4.2.6.2 Server Side
On the server side enable support for the Certificate Status Request extension by adding
an empty CertificateStatusRequest extension object to your extension list:

Listing 4-24: Enabling CertificateStatusRequest extension support on the server side

Server-side extensions are not critical by default. Setting your
CertificateStatusRequest extension object to critical would mean that iSaSiLk
would abort the handshake if the client does not send CertificateStatusRequest
extension.
In addition to configure your iSaSiLk server for supporting the Certificate Status Request
extension you also must tell him where he can get (OCSP) status information for his
server credentials. Instead of using KeyAndCert objects when adding the server creden-
tials to your SSLServerContext use instances of class OCSPCertStatusKeyAndCert.
In addition to private key and certificate chain of the server, an
OCSPCertStatusKeyAndCert object also may contain the URL of the OCSP respond-
er which has to be contacted for getting revocation status information about the corre-
sponding server certificate (note that only http-URLs are supported).
Optionally an OCSPCertStatusKeyAndCert object may contain a list that maps re-
sponder IDs to responder URLs. This information may help the server to search for the
responder url of a particular responder id that may be sent by the client within the Certifi-
cate Status Request extension:

// create empty CertificateStatusRequest

CertificateStatusRequest statusRequest =

 new CertificateStatusRequest();

// add to ExtensionList

ExtensionList extensions = new ExtensionList();

...

extensions.addExtension(statusRequest);

...

// set extensions for the SSLServerContext configuration:

SSLServerContext serverContext = new SSLServerContext();

...

serverContext.setExtensions(extensions);

...

 TLS Extensions – iSaSiLk

 Stiftung SIC – http://jce.iaik.tugraz.at 32

Listing 4-23: Adding trusted responders to the OCSP cert status chain verifier
Listing 4-25: Specifying server credentials with OCSP responder URL(s)

// the server certificate chain

X509Certificate[] serverCerts = ...;

// the private key of the server

PrivateKey serverKey = ...;

// the URL of the OCSP responder

String responderUrl = "http://...";

// create server credentials

OCSPCertStatusKeyAndCert kayAndCert =

 new OCSPCertStatusKeyAndCert(serverCert, serverKey, responderUrl);

...

// optionally specify responderID-URL mappings

// the public key of a responder

PublicKey responderPublicKey = ...;

// create responder id

ResponderID byKeyID = new ResponderID(serverPublicKey);

String responderUrl = "http://...";

kayAndCert.addOCSPResponder(byKeyID, responderUrl);

// the Name of a responder

Name responderName = ...;

// create responder id

ResponderID byNameID = new ResponderID(responderName);

responderUrl = "http://...";

kayAndCert.addOCSPResponder(byNameID, responderUrl);

// add credentials to server context

SSLServerContext serverContext = new SSLServerContext();

serverContext.addServerCredentials(keyAndCert);

...

 TLS Extensions – iSaSiLk

 Stiftung SIC – http://jce.iaik.tugraz.at 33

5 Acronyms

ASN.1 Abstract Syntax Notation One; language for describing data structures in
an abstract and platform independent manner

DER Distinguished Encoding Rules; set of rules for non ambiguously binary
encoding ASN.1 objects

DH Diffie-Hellman; public key algorithm; used for key exchange

DSA Digital Signature Algorithm; public-key digital signature algorithm,
standardized by the Digital Signature Standard (DSS)

RSA Public-key algorithm, developed by Ron Rivest, Adi Shamir and Leon-
ard Adleman; may be used for data encryption or digital signing.

OCSP Online Certificate Status Protocol; protocol for providing revocation sta-
tus information about X.509 certificates

TLS Transport Layer Security; IETF standardaized successor of the SSL (Se-
cure Socket Layer) protocol

X.509 ITU-T (International Telecommunication Union) recommendation for an
authentication system and certificate syntax; profiled by the PKIX work-
ing group of the IETF

 TLS Extensions – iSaSiLk

 Stiftung SIC – http://jce.iaik.tugraz.at 34

6 References

[IAIK-JCE] IAIK-JCE Provider, IAIK, Stiftung SIC, 2003, http://jce.iaik.tugraz.at

[JAVA] JavaTM Technology, Sun Microsystems, Inc., http://java.sun.com/

[JCA] JavaTM Cryptography Architecture API Specification & Reference,
SUN Microsystems, Inc.,

http://java.sun.com/j2se/1.4/docs/guide/security/CryptoSpec.html

[JCE] JavaTM Cryptography Extension (JCE) API Specification & Reference,
SUN Microsystems, Inc.,

http://java.sun.com/j2se/1.4.2/docs/guide/security/jce/JCERefGuide.html

[OCSP] M. Myers, R. Ankney, A. Malpani, S. Galperin, C. Adams: "X.509 In-
ternet Public Key Infrastructure Online Certificate Status Protocol -
OCSP", June 1999

[TLS] T. Dierks and C. Allen: "The TLS Protocol Version 1.0", RFC 2246,
January 1999.

T. Dierks and E. Rescorla, "The TLS Protocol, Version 1.1", RFC 4346,
April, 2006.

[RFC 4366] S. Blake-Wilson, M. Nystrom, D. Hopwood, J. Mikkelsen, T. Wright:
"Transport Layer Security (TLS) Extensions", RFC 4366, April 2006

[RFC 4507] J. Salowey, H. Zhou, P. Eronen, H. Tschofenig: "Transport Layer Secu-
rity (TLS) Session Resumption without Server-Side State", RFC 4507,
May 2006

