

IAIK – Security Target
Version 1.2

IAIK-JCE CC Core 3.1

05 May 2004

Security Target Version 1.2 IAIK-JCE CC Core 3.1

Table of Contents:

TABLE OF CONTENTS: ...2

LIST OF TABLES..5

LIST OF FIGURES ..5

1 ST INTRODUCTION..6

1.1 ST Identification...6

1.2 ST Overview ...6

1.3 CC Conformance ...7

2 TOE DESCRIPTION..8

2.1 Product type ...8

2.2 TOE structure ..8

2.3 General TOE functionality..9
2.3.1 Hash related functionality ..9
2.3.2 MAC related functionality ...9
2.3.3 Digital Signature related functionality...9
2.3.4 Encryption functionality ..10
2.3.5 Random Number Generator related functionality....................................10
2.3.6 TOE Boundary ...11
2.3.7 TOE Environment..12

2.4 Qualified Electronic Signatures..12

3 TOE SECURITY ENVIRONMENT...13

3.1 Assumptions ...13

3.2 Threats ..14

3.3 Organization Security Policies..14

3.4 Subjects, Objects ..15
3.4.1 Subjects ..15
3.4.2 Objects ...15

4 SECURITY OBJECTIVES ...16

4.1 Security Objectives for the TOE ..16

© Institute for applied information processing and communications
 05.05.2004 2/53

Security Target Version 1.2 IAIK-JCE CC Core 3.1

4.2 Security Objectives for the Environment ..17

5 IT SECURITY REQUIREMENTS...19

5.1 TOE Security Functional Requirements ...19
5.1.1 Cryptographic support (FCS)...19
5.1.2 User Data Protection (FDP) ...21

5.2 TOE Security Assurance Requirements ..21
5.2.1 Configuration management (ACM)...23
5.2.2 Delivery and operation (ADO) ..23
5.2.3 Development (ADV)..23
5.2.4 Guidance documents (AGD)..23
5.2.5 Life cycle support (ALC)...23
5.2.6 Tests (ATE)..23
5.2.7 Vulnerability assessment (AVA) ...23

5.3 Security Requirements for the Environment ..24
5.3.1 General Requirements for the Environment ..24
5.3.2 Security Requirements for the IT Environment.......................................24

6 TOE SUMMARY SPECIFICATION ...27

6.1 TOE Security Functions ..27
6.1.1 TSF.Hash (SOF-high) ..27
6.1.2 TSF.Cipher...27
6.1.3 TSF.Signature ..28
6.1.4 TSF.Random (SOF-high)...28
6.1.5 TSF.MAC (SOF-high) ...29

6.2 Assurance Measures ..29

7 PP CLAIMS ...33

8 RATIONALE..34

8.1 Security Objectives Rationale...34

8.2 Security Requirements Rationale...38
8.2.1 Functional Security Requirements Rationale...38
8.2.2 Security Assurance Requirements Rationale ...39

8.3 TOE Summary Specification Rationale...39
8.3.1 TOE Security Functions Rationale ..39

8.4 Dependency Rationale ...40
TSF.Hash ...42
TSF.Cipher...43
TSF.Signature ..44
TSF.Random ..44

© Institute for applied information processing and communications
 05.05.2004 3/53

Security Target Version 1.2 IAIK-JCE CC Core 3.1

TSF.MAC...45
FCS_CKM.1 Cryptographic key generation..45

8.5 Security Functional Requirements Grounding in Objectives....................46

9 APPENDIX A – REFERENCES ..48

10 APPENDIX C – ACRONYMS ..52

11 APPENDIX E - DEFINITION OF THE FAMILY FCS_RND53

11.1 FCS_RND generation of random numbers ...53

© Institute for applied information processing and communications
 05.05.2004 4/53

Security Target Version 1.2 IAIK-JCE CC Core 3.1

List of Tables
TABLE 1 ASSUMPTIONS...14
TABLE 2 THREATS...14
TABLE 3 SUBJECTS ...15
TABLE 4 OBJECTS..15
TABLE 5 SECURITY OBJECTIVES FOR THE TOE ..16
TABLE 6 SECURITY OBJECTIVES FOR THE ENVIRONMENT.........................18
TABLE 7 ASSURANCE REQUIREMENTS (EAL3 +) ..22
TABLE 8 MAPPING THE TOE SECURITY ENVIRONMENT TO SECURITY

OBJECTIVES..36
TABLE 9 TRACING OF SECURITY OBJECTIVES TO THE TOE SECURITY

ENVIRONMENT ..37
TABLE 10 FUNCTIONAL SECURITY REQUIREMENTS RATIONALE FOR THE

TOE..38
TABLE 11 FUNCTIONAL SECURITY REQUIREMENTS RATIONALE FOR THE

ENVIRONMENT ..39
TABLE 12 ASSURANCE SECURITY REQUIREMENTS RATIONALE...............40
TABLE 13 FUNCTIONAL AND ASSURANCE REQUIREMENTS

DEPENDENCIES..42
TABLE 14 REQUIREMENTS TO OBJECTIVES MAPPING..................................47

List of Figures
FIGURE 1: THE TOE AND ITS ENVIRONMENT ..8

© Institute for applied information processing and communications
 05.05.2004 5/53

Security Target Version 1.2 IAIK-JCE CC Core 3.1

1 ST Introduction

1.1 ST Identification
Title: IAIK-JCE CC Core Security Target
Version: 1.2
Date: 05 May 2004
Authors: SIC

Stiftung secure information and communication
technologies.1
IAIK
Institute for applied information processing and
communications – Graz university of technology.

TOE: IAIK-JCE CC Core
TOE version: 3.1
Assurance level: EAL 3+

The TOE meets the assurance requirements of assurance
level EAL 3 augmented by AVA_VLA.4, ADV_IMP.1,
ADO_DEL.2, ADV_LLD.1, ALC_TAT.1 and
AVA_MSU.2.

Strength of functions: The TOEs strength of functions is rated high (SOF high).
Evaluation Body: TÜV Informationstechnik GmbH

Langemarckstraße 20
45141 Essen, Germany

TOE documentation: HTML Documentation - IAIK-JCE 3.1 with IAIK-JCE CC
Core 3.1: Readme.html, File Revision 25 and linked
documents
IAIK – Guidance Document, Integrity Verification
Guidance Version 1.1, 2004-04-22

1.2 ST Overview
The IAIK-JCE CC Core is a set of APIs and implementations of cryptographic
functionality.
Including:

• hash functions
• signature schemes
• block ciphers
• stream ciphers
• asymmetric ciphers
• message authentication codes
• random number generators

1 The IAIK has established the “Stiftung Secure Information and Communication Technologies” (SIC).
Stiftung SIC is a non-profit organisation which was established as a foundation for public utility,
aiming at encouraging independent scientific research, development as well as teaching and knowledge
transfer in the fields of applied information processing, communication and information security. On
December 15, 2003 all rights regarding our crypto toolkits were transferred from IAIK to Stiftung SIC.

© Institute for applied information processing and communications
 05.05.2004 6/53

Security Target Version 1.2 IAIK-JCE CC Core 3.1

It supplements the security functionality of the default Java Runtime Environment.
The IAIK-JCE CC Core is delivered to the customer as part of the IAIK-JCE toolkit,
which extends the CC Core by additional algorithms, features and protocols.

1.3 CC Conformance
The ST is CC part 2 [CC2] extended (by FCS_RND.1) and CC Part 3 [CC3]
conformant. The Evaluation Assurance Level is EAL3 augmented by AVA_VLA.4,
ADV_IMP.1, ADO_DEL.2, ADV_LLD.1, ALC_TAT.1, AVA_MSU.2.
This ST does not claim conformance with any Protection Profile.

© Institute for applied information processing and communications
 05.05.2004 7/53

Security Target Version 1.2 IAIK-JCE CC Core 3.1

2 TOE Description

2.1 Product type
The TOE is pure Java software delivered to users as part of a toolkit. This toolkit
consists of a Java library in form of JAR file, documentation and demo code. The
TOE provides components usable to develop applications including functionality to
create and verify digital signatures as well as encrypting and decrypting data.
The TOE is conformant to the Java Cryptographic Architecture (JCA) and Java
Cryptographic Extensions (JCE) and implements a Cryptographic Service Provider as
defined there. Applications access the cryptographic functionality of this provider
through the JCA and JCE framework.

2.2 TOE structure
This section explains the structure of the TOE, its relationship and boundary to other
components. Figure 1 shows a Java Virtual Machine VM running an application that
uses the TOEs cryptographic algorithms through the JCA/JCE framework.

Java VM

Java Cryptography Frameworks (JCA, JCE)

Application

IAIK Cryptography Provider

Java Cryptography APIs (JCA, JCE)

SH
A-

1

S
H

A-
25

6

S
H

A-
38

4

AE
S

R
SA

 S
ig

na
tu

re

R
SA

 C
ip

he
r

Tr
ip

pl
e-

D
ES

R
C

2

A
R

C
FO

U
R

JCA Cryptography Provider Interface

JCA, JCE Service Provider Interface

Se
cu

re
R

an
do

m

H
M

AC

S
H

A-
51

2

R
IP

EM
D

-1
60

Figure 1: The TOE and its environment

The TOE implements a Java Cryptographic Service Provider (used interchangeably
with "provider" in this document) as defined in the JCA and JCE specification by
SUN Microsystems. This provider implementation is called IAIK provider. The IAIK
provider can be registered in the JCA framework. Thereafter, applications can access
the cryptographic algorithms of the IAIK provider. For each cryptographic primitive
the JCA and JCE provide a separate service provider interface (SPI), which is an
abstract class. Each concrete implementation of a cryptographic algorithm must
implement the SPI and thus derive the abstract class. For instance, the class of the
TOE which contains the actual SHA-1 implementation extends the abstract class
MessageDigestSPI. The TOE implements hash algorithms (also called message
digest in the JCA context), signature algorithms (includes signature generation and
verification) and ciphers (includes block ciphers as well as stream ciphers and
asymmetric ciphers).
The application can request an implementation of a certain algorithm from the JCA
framework using static methods in framework classes. For example, to get an
implementation of the SHA-1 hash algorithm of the IAIK provider, the application
calls MessageDigest.getInstance("SHA-1", "IAIK"). The names of
the algorithms, like “SHA-1”, are defined in the developers manual. The name of the
provider is fixed to IAIK for the IAIK provider. The result is a MessageDigest

© Institute for applied information processing and communications
 05.05.2004 8/53

Security Target Version 1.2 IAIK-JCE CC Core 3.1

object, which contains the SHA-1 implementation of the IAIK provider. The class
MessageDigest of the JCA framework provides a common interface to all hash
algorithms. For signature and cipher implementations the workflow is similar. For a
more detailed description of the JCA/JCE framework please refer to [CRYPTO
SPEC].
The TOE (IAIK-JCE CC Core) is delivered to the customer as part of the IAIK-JCE
toolkit. This toolkit add more algorithms, features and protocols to the TOE
functionality.

2.3 General TOE functionality
The TOE provides cryptographic hash, message authentication code (MAC), digital
signature and encryption related functionality, as well as deterministic random
number generators DRNG.

2.3.1 Hash related functionality
The TOE provides implementations of algorithms used to calculate hash functions.
There are several uses cases, when it is necessary to calculate a cryptographic hash
function only. For instance, when using dedicated cryptographic hardware, like smart
cards, to create digital signatures. Some of these hardware modules are not capable of
computing the hash itself and therefore need the TOE to perform this task.
Furthermore the computation of a hash function will be used whenever the creation of
the signature is a multistep process, where hashes of data to be signed are
incorporated into a new structure (like CMS or XML-Dsig).
The TOE implements the following hash algorithms:

• SHA-1 [FIPS PUB 180-1]
• Ripemd-160 [ISO/IEC 10118-3]
• SHA-256 [FIPS PUB 180-2]
• SHA-384 [FIPS PUB 180-2]
• SHA-512 [FIPS PUB 180-2]

2.3.2 MAC related functionality
To compute a message authentication code the TOE uses the HMAC algorithm as
defined in [RFC 2104]. This HMAC uses the following cryptographic hash functions:

• SHA-1 [FIPS PUB 180-1]
• Ripemd-160 [ISO/IEC 10118-3]
• SHA-256 [FIPS PUB 180-2]
• SHA-384 [FIPS PUB 180-2]
• SHA-512 [FIPS PUB 180-2]

as described in the previous chapter. The application must provide the secret key of
size (128 + k * 8) bit ≤ blocksize of the used hash function, with [k=0,1,2,...]. Smaller
key sizes are supported as well, but they are not suitable for use in an environment
which requires a high strength of functions.

2.3.3 Digital Signature related functionality
The TOE provides implementations of algorithms used to generate and verify digital
signatures. Specifically, the TOE provides implementations of hash functions,
asymmetric encryption algorithms and padding schemes and implements specific
signature schemes. The included hash functions are the same as those listed in the
previous section about hash functionality.

© Institute for applied information processing and communications
 05.05.2004 9/53

Security Target Version 1.2 IAIK-JCE CC Core 3.1

The TOE implements signature generation and verification according to the following
digital signature schemes:

• RSA with SHA-1, SHA-256, SHA-384, SHA-512 or RIPEMD-160 according
to [PKCS#1v1.5], with key lengths of 1024 + k * 64 [k=0,1,2,...] bit. The
maximum key size is 8192 bit .

• RSA-PSS with SHA-1, SHA-256, SHA-384, SHA-512 or RIPEMD-160
according to [PKCS#1v2.1], with key lengths of 1024 + k * 64 [k=0,1,2,...]
bit. The maximum key size is 8192 bit.

The TOE is designed to meet the requirements of an application for the generation
and the verification of qualified electronic signatures as defined in the legislation of
the European Union [EU_directive], [SigG] and [SigV]. However, for the generation
of a qualified electronic signature, it may be required to use an external secure
signature creation device (SSCD) for the private key operation. The TOE can
calculate the hash value in this case but the incorporation of the SSCD is up to the
application.
Most of the signature algorithms support smaller key sizes as well, but they are not
suitable for use in an environment which requires a high strength of functions.

2.3.4 Encryption functionality
The TOE implements several algorithms that can be used for data encryption and
decryption. Key management is out of scope of the TOE. The application provides
the keys to the TOE. The TOE does not modify the keys it gets from the application.
Moreover, it ensures that key material is protected and not revealed to any other
application or other entities.
The TOE implements the following block ciphers:

• AES 128, 192, 256 bit [FIPS PUB 197]
• Triple-DES 112, 168 bit [FIPS 46-3]
• RC2 128-1024 bit [RFC 2268]

Each of these block cipher can be used with the following modes of operation:
• ECB
• CBC
• OFB
• CFB

In addition, AES supports the CTR mode.
The TOE implements the following stream ciphers:

• ARCFOUR 128 – 2048 bit according to [IETF-Draft-Kaukonen]. This
algorithm is assumed to be compatible with RC4TM from RSA Security Inc..

The TOE implements the following asymmetric ciphers:
• RSA 1024 + k * 64 [k=0,1,2,...] bit according to [PKCS#1v1.5]. The

maximum key size is 8192 bit.
• RSA-OAEP 1024 + k * 64 [k=0,1,2,...] bit according to [PKCS#1v2.1]. The

maximum key size is 8192 bit.
Most of the encryption algorithms support smaller key sizes as well, but they are not
suitable for use in an environment which requires a high strength of functions.

2.3.5 Random Number Generator related functionality
The TOE contains two random number generators based on one of the following hash
functions: SHA-1 [FIPS PUB 180-1], SHA-256 [FIPS PUB 180-2], SHA-384 [FIPS

© Institute for applied information processing and communications
 05.05.2004 10/53

Security Target Version 1.2 IAIK-JCE CC Core 3.1

PUB 180-2], SHA-512 [FIPS PUB 180-2] or RIPEMD-160 [ISO/IEC 10118-3]. The
random number generator must be initialized with a random seed with adequate
entropy.

2.3.6 TOE Boundary
In principle, the TOE has two boundaries. The first is the interaction with the Java
VM and its Java Runtime Environment JRE and JCE classes. The TOE assumes that
these operate compliant with the Java Language Specification 2.0 and the Java Virtual
Machine Specification, Second Edition.
The second boundary is between the TOE and the application. It is worth to note that
this is not a direct boundary. The application only accesses classes of the JCA and
JCE framework directly, and these classes forward requests to the TOE. The JCA and
JCE classes are part of the environment and the TOE assumes that they operate
according to the JCA Specification of Java 1.1 [JCA1.1-REF] (or later) and the JCE
Specification 1.2 [JCE1.2-REF] (or later). The TOE does not have any direct
interfaces to any component other than the application, the JCA and JCE classes or
the JRE classes (like e.g. the operating system or other applications). The TOE does
also not initiate any I/O operations like file access or network connections.

The TOE is able to support the generation of digital signatures. Two use cases can be
identified:

• Advanced and Qualified Electronic Signatures.
The TOE is used together with a secure signature creation device to create
qualified electronic signatures or advanced electronic signatures. In this case,
the TOE is used only to calculate the hash of the data to be signed (and only if
the SSCD is unable to do so by itself). The TOE calculates the hash and
returns it to the application. The application can pass this hash value to the
SSCD to process the private key operation. It may access such cryptographic
hardware e.g. via the PKCS#11 API. Prompting a PIN or pass phrase for
access to the private key, will usually be done with a smart card reader or
HSM which has its own key pad for entering this authentication data.
Displaying data to be signed or verified is out of scope of the TOE.

• Conventional Signatures.
The TOE is used without hardware support to create electronic signatures. In
this case all calculations required to create the signature are done within the
TOE. In specific, the Java VM (with its JRE classes) executes the code of the
TOE which implements all required cryptographic algorithms.

Furthermore the TOE has functionality which is not part of the evaluation. For
example:

• The TOE supports more key sizes than the minimum and maximum key size
which are described in chapter 2.3.3 and 2.3.4 for RSA-Signatures and RSA-
Encryption. The maximum key size depends on the system resources only.

• The TOE also supports PCBC as mode of operation for all symmetric block
ciphers.

In addition, the IAIK-JCE toolkit which contains the TOE offers more functionality
which is not part of the TOE. For instance:

• Additional ciphers like DES, IDEA, or Blowfish
• More hash algorithms like MD2, MD5 or RipeMd128

© Institute for applied information processing and communications
 05.05.2004 11/53

Security Target Version 1.2 IAIK-JCE CC Core 3.1

• X.509 Certificate parsing and creation
• CRL parsing and creation
• OCSP protocol classes

2.3.7 TOE Environment
The application, the JRE classes, the JCA and JCE framework and the Java VM
constitute the environment of the TOE. The TOE is written in Java only and runs in
the same instance of the Java VM as the environment. All components communicate
by Java method calls executed by the Java VM. No other communication techniques
are used at the interfaces. In particular the TOE does not perform any I/O operation,
like file or network access. The TOE requires the Java VM in use to operate as
defined in one of the following specifications:

• JVM Specification 1.0.2 [JVMSpec1] with the Java Platform 1.1 API
[JavaAPI1.1] and JCE 1.2.x ([JCE1.2-REF], [JCE1.2.1-REF], [JCE1.2.2-REF]
or [JCE1.4-REF])

• JVM Specification 1.2 [JVMSpec2] with one of the following APIs:
o J2SE 1.4.x [JavaAPI1.4]
o J2SE 1.3.x [JavaAPI1.3] and JCE 1.2.x ([JCE1.2-REF], [JCE1.2.1-

REF], [JCE1.2.2-REF] or [JCE1.4-REF])
o J2SE 1.2.x [JavaAPI1.2] and JCE 1.2.x ([JCE1.2-REF], [JCE1.2.1-

REF], [JCE1.2.2-REF] or [JCE1.4-REF])

Only the administrator can install and modify the environment and the TOE.

2.4 Qualified Electronic Signatures
The TOE is aimed to be compliant with the requirement specified for products for
qualified electronic signatures in the German Digital Signature Act [SigG] § 17 and
the Digital Signature Ordinance [SigV] § 15.
If the application attempts to generate a qualified electronic signature, it may use the
TOE to calculate the hash value over the signed data. After receiving the hash value
from the TOE, the application forwards this hash value to a SSCD. The TOE does
not communicate with the SSCD. This is the job of the application.
The TOE specifically supports several algorithms which are relevant with respect to
qualified signatures [SigG-Alg]. The relevant hash functions are:

• SHA-1 hash function
• SHA-256
• SHA-384
• SHA-512
• RIPEMD-160 hash function

The relevant signature algorithms for qualified signatures are:
• RSA according to PKCS#1 v1.5
• RSA-PSS according to PKCS#1 v2.1

© Institute for applied information processing and communications
 05.05.2004 12/53

Security Target Version 1.2 IAIK-JCE CC Core 3.1

3 TOE Security Environment
The statement of TOE security environment describes the security aspects of the
environment in which the TOE is intended to be used and the manner in which it is
expected to be employed.
To this end, the statement of TOE security environment identifies and lists the
assumptions made on the operational environment (including physical and procedural
measures), states the intended method of use of the product, defines the threats that
the product is designed to counter.

3.1 Assumptions
Assumption Definition Security Objectives
A.Protection Protection.

The TOE and its environment are
protected in such a way that it is
impossible for S.Attacker to read
or modify any data.

OE.EnvironmentIntegrity,
OE.EnvironmentProtection

A.Train Administrators (S.Admin) are
assumed to be suitably qualified
to set up the system and to verify
the TOE integrity.

OE.TOEIntegrity

A.Manual S.Developer uses the TOE in the
right way as described in the
manual. In order to reach SOF
high, the S.Developer must use
the key sizes recommend in the
manual.

OE.ExecutionEnvironment,
OE.TOE_Usage

A.SeedManagement SeedGeneration.

The IT-Environment must
provide a suitable seed for the
RandomNumberGenerator.
Furthermore it must ensure that
the seed is kept secret.

OE.SuitableSeed,
OE.SeedProtection

A.KeyManagement Key Management.

The IT-Environment is
responsible for key management.
Key management is out of scope
of the TOE. O.PrivateKey and
O.SecretKey, needed for
computation of O.CipherText,
O.MAC and O.Signature, must
be provided by S.Application.
The TOE does not generate or
destruct keys. Given key material
won’t be modified or stored by
the TOE.

OE.KeyProtection,
OE.CorrectKeys

© Institute for applied information processing and communications
 05.05.2004 13/53

Security Target Version 1.2 IAIK-JCE CC Core 3.1

A.Java_Spec Java Specification.

The Java VM in use works
according the JVM Specification
V 1.0.2 [JVMSpec1] with the
API of Java 1.1 [JavaAPI1.1] or
JVM 1.2 [JVMSpec2] with the
following APIs:

• J2SE 1.4.x [JavaAPI.14]
• J2SE 1.3.x [JavaAPI1.3]
• J2SE 1.2.x [JavaAPI1.2]

OE.ExecutionEnvironment

A.JCE_Spec JCE Specification.
JCE framework, which is needed
if Java API in use is older than
version 1.4 [JavaAPI.14] (1.1.x
[JavaAPI1.1], 1.2.x [JavaAPI1.2],
1.3.x [JavaAPI1.3]), works
according to the JCE 1.2
[JCE1.2-REF], JCE 1.2.1
[JCE1.2.1-REF], JCE 1.2.2
[JCE1.2.2-REF] specification.

OE.ExecutionEnvironment

Table 1 Assumptions

3.2 Threats
Threat Definition Security Objectives
T.SignatureForgery S.Attacker could forge

O.Signature or recover
O.PrivateKey from
O.Signature.

OT.SignatureSecure,
OE.EnvironmentProtection

T.DeduceData S.Attacker could deduce
O.Data from O.CipherText.

OT.CipherSecure,
OE.EnvironmentProtection

T.DeduceKey S.Attacker could deduce
O.SecretKey from
O.CipherText.

OT.CipherSecure,
OE.EnvironmentProtection

T.DeduceRandomSeed S.Attacker could deduce
O.RandomSeed.

OT.RandomSecure,
OE.EnvironmentProtection

T.PredictRandomNumber S.Attacker could predict the
next generated
O.RandomNumber.

OT.RandomSecure

T.MACForgery S.Attacker could forge
O.MAC or recover
O.SecretKey.

OT.MACSecure,
OE.EnvironmentProtection

T.HashForgery S.Attacker could find
collisions to O.Hash..

OT.HashSecure

Table 2 Threats

3.3 Organization Security Policies
There are no organisational security policies with which the TOE must comply.

© Institute for applied information processing and communications
 05.05.2004 14/53

Security Target Version 1.2 IAIK-JCE CC Core 3.1

3.4 Subjects, Objects

3.4.1 Subjects
Subject Definition
S.Admin User who is in charge to perform the TOE installation

and TOE configuration.
S.Developer User who is in charge to use the TOE for developing

his Application (S.Application).
S.Application The surrounding application which is using the TOE.
S.JavaVM Java Virtual Machine.
S.Attacker A human or a process outside the TOE whose main

goal is to access Application sensitive information.
Since the current evaluation level EAL3+, the attacker
has a high level potential attack and no time limit.

Table 3 Subjects

3.4.2 Objects
Object Definition
O.Data Private data obtained from the S.Application (e.g. Data

to be signed).
O.MAC MAC generated by the TOE.
O.Hash Hash generated by the TOE.
O.Signature Signature generated by the TOE.
O.CipherText The cipher text generated by the TOE.
O.PrivateKey Private Key Data which the TOE uses to generate

O.Signature (e.g. RSA Private key).
O.SecretKey Secret Key Data which the TOE uses to encrypt

O.Data and/or decrypt O.CipherText (e.g. AES key).
O.RandomSeed The seed (initial state) used by the DRNG
O.RandomNumber The random number generated by the TOE

Table 4 Objects

© Institute for applied information processing and communications
 05.05.2004 15/53

Security Target Version 1.2 IAIK-JCE CC Core 3.1

4 Security Objectives

4.1 Security Objectives for the TOE
Security Objective Definition Threats
OT.SignatureSecure Signature Secure.

The TOE shall generate and
validate O.Signature. The TOE
uses robust algorithms to ensure
that the signature cannot be forged
or O.PrivateKey cannot be
reconstructed from O.Signature.

T.SignatureForgery

OT.CipherSecure Data Privacy.

The TOE shall generate secure
O.CipherText from O.Data by
encryption with O.SecretKey or
O.Data from O.CipherText by
decryption with O.SecretKey. The
use of robust algorithms and
appropriate key sizes ensures that
O.SecretKey, O.Data or
O.CipherText cannot be deduced.

T.DeduceData,
T.DeduceKey

OT.RandomSecure The TOE shall generate
unpredictable O.RandomNumber.
O.RandomSeed cannot be deduced.

T.DeduceRandomSeed
T.PredictRandomNumber

OT.MACSecure MAC Secure.
The TOE shall generate and
validate O.MAC. It uses robust
MAC algorithms, that cannot be
forged. Furthermore O.SecretKey
cannot be extracted from O.MAC.

T.MACForgery

OT.HashSecure Secure hash algorithms.

The TOE shall generate secure
O.Hash.

T.HashForgery

Table 5 Security Objectives for the TOE

© Institute for applied information processing and communications
 05.05.2004 16/53

Security Target Version 1.2 IAIK-JCE CC Core 3.1

4.2 Security Objectives for the Environment
Security Objective Definition Assumptions / Threats
OE.TOEIntegrity S.Admin or S.Developer

must be sufficiently
trained to set up the
system and shall verify
the integrity of the TOE
by comparing the SHA-1
fingerprint of the
delivered ZIP file with
the fingerprint obtained
by an independent secure
delivery from the
manufacturer. (see
ADO_DEL.2 in chap.
6.2)

A.Train

OE.EnvironmentIntegrity Access Protected.

The Environment shall
ensure that only
S.Application has access
to the TOE.

A.Protection

OE.KeyProtection Key Protection.

The Environment must
protect the keys from
unauthorized access.

A.KeyManagement

OE.CorrectKeys Correct Keys.

The Environment must
provide well formed and
valid keys to the TOE.

A.KeyManagement

OE.SuitableSeed Suitable Seed. The
Environment must
provide a suitable seed
to the TOE.

A.SeedManagement

OE.SeedProtection Seed Protection.
The Environment must
protect the seed from
unauthorized access.

A.SeedManagement

OE.ExecutionEnvironment Execution Environment.

The Environment must
provide an execution
environment that meets
the requirements (see
chap. 2.3.7).

A.Java_Spec, A.JCE_Spec,
A.Manual

© Institute for applied information processing and communications
 05.05.2004 17/53

Security Target Version 1.2 IAIK-JCE CC Core 3.1

OE.EnvironmentProtection Side Channel.

The Environment must
protect the TOE against
side channel attacks.

A.Protection,
T.SignatureForgery,
T.DeduceData, T.DeduceKey,
T.DeduceRandomSeed,
T.MACForgery

OE.TOE_Usage TOE Usage.

The S.Application uses
the TOE according to
the manual.

A.Manual

Table 6 Security Objectives for the Environment

© Institute for applied information processing and communications
 05.05.2004 18/53

Security Target Version 1.2 IAIK-JCE CC Core 3.1

5 IT Security Requirements

5.1 TOE Security Functional Requirements
This chapter defines the functional requirements for the TOE using functional
components drawn from [CC2] and the extended component
FCS_RND.1/HashRandom.
The minimum strength level for the TOE security functional requirements
FCS_COP.1/SHA-1, FCS_COP.1/SHA-265, FCS_COP.1/SHA-384,
FCS_COP.1/SHA-512, FCS_COP.1/RIPEMD-160, FCS_RND.1/HashRandom,
FCS_RND.1/FipsRandom and FCS_COP.1/HMAC is SOF-high.
According to [CC1] the strength of cryptographic algorithms is outside the scope of
the CC evaluation.

5.1.1 Cryptographic support (FCS)

Cryptographic operation FCS_COP.1/SHA-1
The TSF shall perform Secure hash computation in accordance with a specified
cryptographic algorithm SHA-1 and cryptographic key sizes none that meet the
following: FIPS PUB 180-1.

Cryptographic operation FCS_COP.1/SHA-256
The TSF shall perform Secure hash computation in accordance with a specified
cryptographic algorithm SHA-256 and cryptographic key sizes none that meet the
following: FIPS PUB 180-2.

Cryptographic operation FCS_COP.1/SHA-384
The TSF shall perform Secure hash computation in accordance with a specified
cryptographic algorithm SHA-384 and cryptographic key sizes none that meet the
following: FIPS PUB 180-2.

Cryptographic operation FCS_COP.1/SHA-512
The TSF shall perform Secure hash computation in accordance with a specified
cryptographic algorithm SHA-512 and cryptographic key sizes none that meet the
following: FIPS PUB 180-2.

Cryptographic operation FCS_COP.1/RIPEMD-160
The TSF shall perform Secure hash computation in accordance with a specified
cryptographic algorithm RIPEMD-160 and cryptographic key sizes none that meet
the following: ISO/IEC 10118-3:1998.

Cryptographic operation FCS_COP.1/AES
The TSF shall perform Data encryption and decryption in accordance with a
specified cryptographic algorithm AES ECB/CBC/OFB/CFB/CTR Mode and
cryptographic key sizes 128 bit, 192 bit, 256 bit that meet the following: FIPS PUB-
197.

© Institute for applied information processing and communications
 05.05.2004 19/53

Security Target Version 1.2 IAIK-JCE CC Core 3.1

Cryptographic operation FCS_COP.1/TripleDES
The TSF shall perform Data encryption and decryption in accordance with a
specified cryptographic algorithm Triple-DES ECB/CBC/OFB/CFB Mode and
cryptographic key sizes 112 bit, 168 bit that meet the following: FIPS PUB 46-3.

Cryptographic operation FCS_COP.1/RC2
The TSF shall perform Data encryption and decryption in accordance with a
specified cryptographic algorithm RC2 ECB/CBC/OFB/CFB Mode and
cryptographic key sizes 128 - 1024 bit that meet the following: RFC 2268.

Cryptographic operation FCS_COP.1/ARCFOUR
The TSF shall perform Data encryption and decryption in accordance with a
specified cryptographic algorithm ARCFOUR and cryptographic key sizes 128 - 2048
bit that meet the following: [IETF-Draft-Kaukonen].

Cryptographic operation FCS_COP.1/RSACipher
The TSF shall perform Data encryption and decryption in accordance with a
specified cryptographic algorithm RSA and cryptographic key sizes (1024 + k * 64)
bit - 8192 bit max., [k=0,1,2,...] that meet the following: PKCS#1 v1.5.

Cryptographic operation FCS_COP.1/RSACipherOAEP
The TSF shall perform Data encryption and decryption in accordance with a
specified cryptographic algorithm RSA and cryptographic key sizes (1024 + k * 64)
bit – 8192 bit max., [k=0,1,2,...] that meet the following: PKCS#1 v2.1 OAEP.

Cryptographic operation FCS_COP.1/RSASignature
The TSF shall perform Digital signature generation and verification in accordance
with a specified cryptographic algorithm RSA signature and cryptographic key sizes
(1024 + k * 64) bit – 8192 bit max., [k=0,1,2,...] that meet the following: PKCS#1
v1.5 in combination with FCS_COP.1/SHA-1, FCS_COP.1/SHA-256,
FCS_COP.1/SHA-384, FCS_COP.1/SHA-512 and FCS_COP.1/RIPEMD-160.

Cryptographic operation FCS_COP.1/RSASignaturePSS
The TSF shall perform Digital signature generation and verification in accordance
with a specified cryptographic algorithm RSA signature and cryptographic key sizes
(1024 + k * 64) bit – 8192 bit max., [k=0,1,2,...] that meet the following: PKCS#1
v2.1 PSS in combination with FCS_COP.1/SHA-1, FCS_COP.1/SHA-256,
FCS_COP.1/SHA-384, FCS_COP.1/SHA-512 and FCS_COP.1/RIPEMD-160.

Cryptographic operation FCS_RND.1/HashRandom
The TSF shall provide a mechanism to generate random numbers that meet the
functionality class K3 according to AIS20.

The TSFs shall be able to enforce the use of TSF-generated random numbers for
TSF.Random.

Note: The implementation must be according to example E.5 of AIS20. Possible hash
functions for generating random numbers are: SHA-1 [FIPS PUB 180-1], RIPEMD-

© Institute for applied information processing and communications
 05.05.2004 20/53

Security Target Version 1.2 IAIK-JCE CC Core 3.1

160 [ISO/IEC 10118-3], SHA-256 [FIPS PUB 180-2], SHA-384 [FIPS PUB 180-2],
and SHA-512 [FIPS PUB 180-2].

Cryptographic operation FCS_RND.1/FipsRandom
The TSF shall provide a mechanism to generate random numbers that meet the
functionality class K4 according to AIS20.

The TSFs shall be able to enforce the use of TSF-generated random numbers for
TSF.Random.

Note: The implementation must be according to FIPS PUB 186-2. Possible hash
functions for generating random numbers are: SHA-1 [FIPS PUB 180-1], RIPEMD-
160 [ISO/IEC 10118-3], SHA-256 [FIPS PUB 180-2], SHA-384 [FIPS PUB 180-2],
and SHA-512 [FIPS PUB 180-2].

Cryptographic operation FCS_COP.1/HMAC
The TSF shall perform MAC generation and verification in accordance with a
specified cryptographic algorithm HMAC with SHA-1, SHA-256, SHA-384,
SHA-512, RipeMD-160 and cryptographic key sizes (128+k*8)bit <= block size of
the used hash function [k=0,1,2,...] that meet the following: RFC 2104.

5.1.2 User Data Protection (FDP)

Import of user data without security attributes FDP_ITC.1
• FDP_ITC.1.1

The TSF shall enforce the JVM-Policy when importing user data, controlled under the
SFP, from outside of the TSC.

• FDP_ITC.1.2
The TSF shall ignore any security attributes associated with the user data
when imported from outside the TSC.

• FDP_ITC.1.3
The TSF shall enforce the following rules when importing user data controlled
under the SFP from outside the TSC: none.

Note: JVM-Policy: The private keys and user data, used for computation, are given as
arguments to the TOE. The TOE does not provide access to any copies of key
material, not even the application has access to these copies. Since the environment,
especially the S.JavaVM, protects access to the memory where these copies reside,
there are no means for attackers to get access to these copies. Moreover, the
S.JavaVM guarantees that memory areas are zeroed out before they are reclaimed
and assigned for reuse. With this zero-out any key copies are destructed. The TOE
does not modify the original key objects nor does it destruct them, it only accesses
them in a read-only fashion.

5.2 TOE Security Assurance Requirements
Assurance Class Assurance Components
ACM ACM_CAP.3 ACM_SCP.1
ADO ADO_DEL.2 ADO_IGS.1

© Institute for applied information processing and communications
 05.05.2004 21/53

Security Target Version 1.2 IAIK-JCE CC Core 3.1

ADV ADV_FSP.1 ADV_HLD.2 ADV_RCR.1
ADV_IMP.1 ADV_LLD.1

AGD AGD_ADM.1 AGD_USR.1
ALC ALC_DVS.1 ALC_TAT.1
ATE ATE_COV.2 ATE_DPT.1 ATE_FUN.1

ATE_IND.2
AVA AVA_MSU.2 AVA_SOF.1 AVA_VLA.4

Table 7 Assurance Requirements (EAL3 +)

© Institute for applied information processing and communications
 05.05.2004 22/53

Security Target Version 1.2 IAIK-JCE CC Core 3.1

5.2.1 Configuration management (ACM)

Authorisation controls (ACM_CAP.3)

TOE CM coverage (ACM_SCP.1)

5.2.2 Delivery and operation (ADO)

Detection of modification ADO_DEL.2

Installation, generation, and start-up procedures (ADO_IGS.1)

5.2.3 Development (ADV)

Informal functional specification (ADV_FSP.1)

Subset of the implementation of the TSF (ADV_IMP.1)

Security enforcing high-level design (ADV_HLD.2)

Descriptive low-level design (ADV_LLD.1)

Informal correspondence demonstration (ADV_RCR.1)

5.2.4 Guidance documents (AGD)

Administrator guidance (AGD_ADM.1)

User guidance (AGD_USR.1)

5.2.5 Life cycle support (ALC)

Well-defined development tools (ALC_TAT.1)

Identification of security measures (ALC_DVS.1)

5.2.6 Tests (ATE)

Analysis of coverage (ATE_COV.2)

Testing: high-level design (ATE_DPT.1)

Functional testing (ATE_FUN.1)

Independent testing – sample (ATE_IND.2)

5.2.7 Vulnerability assessment (AVA)

Validation of analysis (AVA_MSU.2)

Strength of TOE security function evaluation (AVA_SOF.1)

Highly resistant (AVA_VLA.4)

© Institute for applied information processing and communications
 05.05.2004 23/53

Security Target Version 1.2 IAIK-JCE CC Core 3.1

5.3 Security Requirements for the Environment

5.3.1 General Requirements for the Environment

R.EnvironmentIntegrity
The Environment shall ensure that only S.Application has access to the TOE.

R.KeyProtection
The Environment must protect the keys from unauthorized access.

R.CorrectKeys
The Environment must provide well formed and valid keys to the TOE.

R.SuitableSeed:
The TSF has to provide a random seed offering suitable entropy and the length of the
seed should be at least half the size of the hash value; e.g. s0 should have at least 80
bits if the pseudo random is based on the SHA-1 hash, which produces 160 bit hash
values.

R.SeedProtection
The Environment must protect the seed from unauthorized access.

R.ExecutionEnvironment
The Environment must provide an execution environment that meets the requirements
(see chap. 2.3.7).

R.EnvironmentProtection
The Environment must protect the TOE against side channel attacks.

R.TOE_Usage
The S.Application uses the TOE according to the S.Manual.

R.TOEIntegrity
S.Admin or S.Developer must be sufficiently trained to set up the system and shall
verify the integrity of the TOE by comparing the SHA-1 fingerprint of the delivered
ZIP file with the fingerprint obtained by an independent secure delivery from the
manufacturer.

5.3.2 Security Requirements for the IT Environment

Note: The IT Environment is the S.JavaVM and/or the S.Application.

Subset residual information protection (FDP_RIP.1)

FDP_RIP.1.1

© Institute for applied information processing and communications
 05.05.2004 24/53

Security Target Version 1.2 IAIK-JCE CC Core 3.1

The TSF shall ensure that any previous information content of a resource is made
unavailable upon the de-allocation of the resource from the following objects: seed.

Cryptographic key generation (FCS_CKM.1)

FCS_CKM.1/AES
The TSF shall generate cryptographic keys in accordance with a specified
cryptographic key generation algorithm FIPS PUB 197 and specified cryptographic
key sizes 128, 192, 256 bit that meet the following: FIPS PUB 197.

FCS_CKM.1/TripleDES
The TSF shall generate cryptographic keys in accordance with a specified
cryptographic key generation algorithm FIPS 46-3 and specified cryptographic key
sizes 112, 168 bit that meet the following: FIPS 47-3.

FCS_CKM.1/RC2
The TSF shall generate cryptographic keys in accordance with a specified
cryptographic key generation algorithm RFC 2268 and specified cryptographic key
sizes 128-1024 bit that meet the following: RFC 2268.

FCS_CKM.1/ARCFOUR
The TSF shall generate cryptographic keys in accordance with a specified
cryptographic key generation algorithm IETF-Draft-Kaukonen and specified
cryptographic key sizes 128-2048 bit that meet the following: IETF-Draft-
Kaukonen.

FCS_CKM.1/RSACipher
The TSF shall generate cryptographic keys in accordance with a specified
cryptographic key generation algorithm PKCS#1v1.5 and specified cryptographic key
sizes (1024 + k * 64) – 8192 bit, [k=0,1,2,...] that meet the following: PKCS#1v1.5.

FCS_CKM.1/RSACipherOAEP
The TSF shall generate cryptographic keys in accordance with a specified
cryptographic key generation algorithm PKCS#1v2.1 and specified cryptographic key
sizes (1024 + k * 64) – 8192 bit, [k=0,1,2,...] that meet the following: PKCS#1v2.1.

FCS_CKM.1/RSASignature
The TSF shall generate cryptographic keys in accordance with a specified
cryptographic key generation algorithm PKCS#1v1.5 and specified cryptographic key
sizes (1024 + k * 64) – 8192 bit, [k=0,1,2,...] that meet the following: PKCS#1v1.5.

FCS_CKM.1/RSASignaturePSS
The TSF shall generate cryptographic keys in accordance with a specified
cryptographic key generation algorithm PKCS#1v2.1 and specified cryptographic key
sizes (1024 + k * 64) – 8192 bit, [k=0,1,2,...] that meet the following: PKCS#1v2.1.

FCS_CKM.1/HMAC

© Institute for applied information processing and communications
 05.05.2004 25/53

Security Target Version 1.2 IAIK-JCE CC Core 3.1

The TSF shall generate cryptographic keys in accordance with a specified
cryptographic key generation algorithm not applicable and specified cryptographic
key sizes of at least 128 bit that meet the following: RFC2104.

Note: As described in RFC 2104 any byte array can be used as key. Thus there is no
need to specify a key generation algorithm. The key length should be at least 128 bit
to prevent a brute-force key search.

Cryptographic key destruction (FCS_CKM.4)

FCS_CKM.4/AES
The TSF shall destroy cryptographic keys in accordance with a specified
cryptographic key destruction method zeroing out memory areas that meets the
following: JVMSpec1, JVMSpec2.

FCS_CKM.4/TripleDES
Analogous to FCS_CKM.4/AES.

FCS_CKM.4/RC2
Analogous to FCS_CKM.4/AES.

FCS_CKM.4/ARCFOUR
Analogous to FCS_CKM.4/AES.

FCS_CKM.4/RSACipher
Analogous to FCS_CKM.4/AES.

FCS_CKM.4/RSACipherOAEP
Analogous to FCS_CKM.4/AES.

FCS_CKM.4/RSASignature
Analogous to FCS_CKM.4/AES.

FCS_CKM.4/RSASignaturePSS
Analogous to FCS_CKM.4/AES.

FCS_CKM.4/HMAC
Analogous to FCS_CKM.4/AES.

© Institute for applied information processing and communications
 05.05.2004 26/53

Security Target Version 1.2 IAIK-JCE CC Core 3.1

6 TOE Summary Specification

6.1 TOE Security Functions

6.1.1 TSF.Hash (SOF-high)
The TOE is capable of computing a cryptographic hash function (also called message
digest in this context). A message digest algorithm represents the functionality of an
one-way hash function for computing a fixed sized data value (message digest, hash)
from input data of arbitrary size. The length of the resulting hash value usually is
shorter than the length of the input data. Using a one-way hash function will make it
easy to compute the hash from the given data, but hard to go the reverse way for
calculating the input data when only the hash is known. Furthermore, a proper hash
function should avoid any collision, meaning that it has to be hard to find two
different messages producing the same hash value. The following hash algorithms are
implemented:
FCS_COP.1/SHA-1 (SOF-high):
A pure Java implementation of the SHA-1 hash algorithm according to FIPS PUB
180-1.

FCS_COP.1/SHA-256 (SOF-high):
A pure Java implementation of the SHA-256 hash algorithm according to FIPS PUB
180-2.

FCS_COP.1/SHA-384 (SOF-high):
A pure Java implementation of the SHA-384 hash algorithm according to FIPS PUB
180-2.

FCS_COP.1/SHA-512 (SOF-high):
A pure Java implementation of the SHA-512 hash algorithm according to FIPS PUB
180-2.

FCS_COP.1/RIPEMD-160 (SOF-high):
A pure Java implementation of the RIPEMD-160 hash algorithm according to
ISO/IEC 10118-3:1998.

6.1.2 TSF.Cipher
The TOE offers functionality to decrypt and encrypt data. These functions can be
subdivided into symmetric and asymmetric functions.

6.1.2.1 Symmetric Functions:
The TOE provides symmetric block ciphers for data encryption and decryption.
Symmetric ciphers use a shared secret for decryption and encryption. Additionally
these ciphers can be used in various modes of operations like ECB, CBC, OFB and
CFB. The following symmetric algorithms are implemented:

FCS_COP.1/AES:

© Institute for applied information processing and communications
 05.05.2004 27/53

Security Target Version 1.2 IAIK-JCE CC Core 3.1

A pure Java implementation of AES data encryption and decryption in
ECB/CBC/OFB/CFB/CTR Mode with 128, 192, 256 bit key size according to FIPS
PUB-197.

FCS_COP.1/TripleDES:
A pure Java implementation of Triple-DES data encryption and decryption in
ECB/CBC/OFB/CFB Mode with 112, 168 bit key size according to FIPS PUB 46-3.

FCS_COP.1/RC2:
A pure Java implementation of RC2 data encryption and decryption in
ECB/CBC/OFB/CFB Mode with 128-1024 bit key size according to RFC2268.

FCS_COP.1/ARCFOUR:
A pure Java implementation of ARCFOUR data encryption and decryption with 128-
2048 bit key size according to [IETF-Draft-Kaukonen].

6.1.2.2 Asymmetric Functions:
In contrast to the symmetric ciphers, asymmetric techniques use two different keys to
encrypt and decrypt the data. The TOE implements the following asymmetric
encryption schemes:
FCS_COP.1/RSACipher:
A pure Java implementation of RSA data encryption and decryption with (1024 + k *
64) – 8192 bit max., [k=0,1,2,...] bit key size according to PKCS#1 v1.5.

FCS_COP.1/RSACipherOAEP:
A pure Java implementation of RSA data encryption and decryption with (1024 + k *
64) – 8192 bit max.,[k=0,1,2,...] bit key size according to PKCS#1 v2.1 OAEP.

6.1.3 TSF.Signature
The TOE can be used to generate and validate digital signatures according to the
following schemes:

FCS_COP.1/RSASignature:
A pure Java implementation of RSA signature generation and verification with
(1024 + k * 64) – 8192 bit max., [k=0,1,2,...] bit key size according to PKCS#1 v1.5
in combination with FCS_COP.1/SHA-1, FCS_COP.1/SHA-256,
FCS_COP.1/SHA-384, FCS_COP.1/SHA-512 and FCS_COP.1/RIPEMD-160.

FCS_COP.1/RSASignaturePSS:
A pure Java implementation of RSA signature generation and verification with
(1024 + k * 64) – 8192 bit max., [k=0,1,2,...] bit key size according to PKCS#1 v2.1
PSS in combination with FCS_COP.1/SHA-1, FCS_COP.1/SHA-256,
FCS_COP.1/SHA-384, FCS_COP.1/SHA-512 and FCS_COP.1/RIPEMD-160.

6.1.4 TSF.Random (SOF-high)
The TOE offers deterministic random number generators (DRNG). The application
has to provide a random seed, offering suitable entropy.

© Institute for applied information processing and communications
 05.05.2004 28/53

Security Target Version 1.2 IAIK-JCE CC Core 3.1

FCS_RND.1/HashRandom (SOF-high):
A pure Java implementation of a class K3 secure random number generator as
defined in AIS20. The implementation is according to example E.5 of AIS20.
Possible hash functions for generating random numbers are: SHA-1 [FIPS PUB 180-
1], RIPEMD-160 [ISO/IEC 10118-3], SHA-256 [FIPS PUB 180-2], SHA-384 [FIPS
PUB 180-2] und SHA-512 [FIPS PUB 180-2].

FCS_RND.1/FipsRandom (SOF-high):
A pure Java implementation of a class K4 secure random number generator as
defined in AIS20. The implementation is according to FIPS PUB 186-2. Possible
hash functions for generating random numbers are: SHA-1 [FIPS PUB 180-1],
RIPEMD-160 [ISO/IEC 10118-3], SHA-256 [FIPS PUB 180-2], SHA-384 [FIPS
PUB 180-2] und SHA-512 [FIPS PUB 180-2].

6.1.5 TSF.MAC (SOF-high)
Message Authentication Codes (MACs) are used to guarantee the integrity and
authenticity of a message. The TOE uses a HMAC, which is based on a shared secret
and a secure hash function, in compliance with the following standard:
FCS_COP.1/HMAC (SOF-high):
A pure Java implementation of HMAC generation and verification using SHA-1,
SHA-256, SHA-384, SHA-512, RipeMD-160 as hash functions with key sizes of
(128+k*8)bit <= block size of the used hash function [k=0,1,2,...] according to RFC
2104.

6.2 Assurance Measures
Assurance

requirements
Measures

C
on

fig
ur

at
io

n
m

an
ag

em
en

t

ACM_CAP.3

IAIK maintains a central CM server located in a locked
server room.
The CM tool in use is Microsoft Visual SourceSafe.

Each version of each configuration item is archived and
maintained in the central Visual SourceSafe database. Each
item may be uniquely identified by its name (full path
name) within the corresponding project folder and each
version of that item by its version number, its creation or
modification date and time, and, if available, its label (a
label is not required on each version, however, the
evaluated version of the IAIK-JCE CC Core is tagged with
a unique identifier (as all other release versions, too)).
Version number, date and time are assigned automatically;
A label is set by the user.

Authorisation controls to both, the central server and the
user workstations, are managed by the security functions of
the particular operating system. Access to the SourceSafe
database is password protected to authorized developers
only.

© Institute for applied information processing and communications
 05.05.2004 29/53

Security Target Version 1.2 IAIK-JCE CC Core 3.1

ACM_SCP.1

The CM system tracks the TOE implementation
representation as well as documentation and test material.
The implementation is archived as encapsulated release
versions containing the entire Java source code.

ADO_DEL.2

D
el

iv
er

y
an

d
op

er
at

io
n

ADO_IGS.2

IAIK delivers the library and all documentation in terms of
a single ZIP archive on a CD. Furthermore the CD contains
a SHA-1 fingerprint of this ZIP file and of all relevant
parts contained within the ZIP. Thereby it is possible to
check the integrity of some unzipped parts after the
installation. A tool to validate these hash values will be
included as well.

All these hash values will be published on IAIKs web
server (https access) and additionally will be sent to the
customers with a signed e-mail , with fax or handed over
personally.

The TOE itself, which is a jar archive containing the
compiled Java code, is signed, as required by the JCE
specification [JCE1.4-REF].

There is no installation of the TOE in the conventional
meaning. The administrator simply has to unzip the TOE
and put it on the “right place”. The “right place” depends
on the application using the TOE.

ADV_FSP.1

IAIK provides a functional specification of the TOE. The
usage of the security functions of the TOE is primarily
prescribed by the JCA/JCE architecture which defines
most of the interfaces. There exist different versions of this
architecture. The various original specifications of this
architecture are added to the delivered documents. All
other interfaces that are not compliant to the JCA/JCE
architecture are described additionally.

D
ev

el
op

m
en

t

ADV_HLD.2

 The HLD (High Level Design) description introduces the
subsystems of the TOE. According to the JCA/JCE
provider definition each subsystem is defined as a
collection of Java packages. There are only two
subsystems, IAIK and UTILITIES. Subsystem IAIK
implements all TOE security functions (see chapter 6.1 of
this document). Subsystem UTILITIES provides a set of
utilities that are used by subsystem IAIK. The HLD also
presents all external (to the environment) and internal
interfaces (among the subsystems) of the two subsystems.
The presentation is based on the Javadoc output of the
corresponding classes. With respect to the functional
specification, the HLD introduces the JCA/JCE SPI as
main interface between final application (end user, API)
and TOE subsystems, and discusses where the TOE
extends the/differs from the JCA/JCE reference API/SPI.

© Institute for applied information processing and communications
 05.05.2004 30/53

Security Target Version 1.2 IAIK-JCE CC Core 3.1

ADV_RCR.1

 The RCR (Representation Correspondence) shows the
correspondence between the TSS security functions (as
presented in chapter 6.1 of this document), the FSP
(functional specification), HLD (high level design), LLD
(low level design) and IMP (implementation). It stepwise
refines the design by leading from the JCA/JCE API (FSP)
to the JCE/JCA SPI (HLD) to TOE subsystems (HLD),
modules (LLD) and final classes (IMP) which are
presented at Java Source Code level.

ADV_IMP.1

The IMP (Implementation Representation) describes the
structure of the TOE source code. In addition it provides
information about how to compile the source code.

ADV_LLD.1

 The LLD (Low Level Design) discusses the modules of
the TOE subsystems and presents all external (to the
environment and other subsystems) and internal interfaces
(among the modules of a subsystem) module interfaces.
The presentation is based on the Javadoc output of the
corresponding classes. The LLD also shows how the
several modules depend on each other.

AGD_ADM.1

There is no separate administrator manual. All required
information on how to install the TOE are within the user
manual.

G
ui

da
nc

e
do

cu
m

en
ts

AGD_USR.1

IAIK provides a user manual, which contains all necessary
information about the TOE installation and usage (required
by the application programmers).

ALC_DVS.1

The protection of the development environment is
guaranteed by physical, procedural and personal measures.

L
ife

 c
yc

le
 su

pp
or

t

ALC_TAT.1

The IAIK-JCE CC Core library is written in the Java
programming language in a code fully compatible to
version 1.1. Java is a well defined programming language.
Critical constructs, such as threads or constructs from the
Reflection API, are not used within the IAIK-JCE CC Core
library.

ATE_COV.2

ATE_DPT.1

ATE_FUN.1

T
es

ts

ATE_IND.2

The tests are explained in a test specification document. It
describes the source of test data and how the tests are
organized.

Moreover, there is a test suite for the complete TOE which
include tests of all interfaces.

This test suite runs automatically and applies test vectors
for each TSF. The test vectors consist of input data and
expected output data. Standard vectors were taken where
available. The tests have been monitored with a tool that
measures the code coverage of the test suite.

The evaluators will have access to the test suite to verify it.

© Institute for applied information processing and communications
 05.05.2004 31/53

Security Target Version 1.2 IAIK-JCE CC Core 3.1

AVA_MSU.2

AVA_SOF.1

V
ul

ne
ra

bi
lit

y
as

se
ss

m
en

t

AVA_VLA.4

The AVA (Vulnerability Assessment) analyses the TOE
for vulnerabilities. It starts with an investigation of the
guidance documentation to ensure if it is complete and
consistent. Then, there follows a consideration of the
strength of the used security functions. The document
closes with an systematic analysis of the TOE for
vulnerabilities. The attacker is assumed to have a high
attack potential an practically unlimited time.

© Institute for applied information processing and communications
 05.05.2004 32/53

Security Target Version 1.2 IAIK-JCE CC Core 3.1

7 PP Claims
This chapter is not applicable to this ST (see chapter 1.3).

© Institute for applied information processing and communications
 05.05.2004 33/53

Security Target Version 1.2 IAIK-JCE CC Core 3.1

8 Rationale

8.1 Security Objectives Rationale

This chapter shall demonstrate that the stated security objectives are traceable to all of
the aspects identified in the TOE security environment and are suitable to cover them.

Policy /Threat/
Assumption:

Objectives: Comment:

Security Objectives for the TOE
T.DeduceData OT.CipherSecure This objective ensures

that data cannot be
deduced from O.Cipher.
By the use of
appropriate cipher
algorithms, which are
generally known as
secure, it is not possible
to deduce data from the
cipher text.

T.DeduceKey OT.CipherSecure This objective ensures
that keys cannot be
deduced from O.Cipher.
By the use of
appropriate cipher
algorithms, which are
generally known as
secure, it is not possible
to deduce the key from
the cipher text.

T.DeduceRandomSeed OT.RandomSecure This objective ensures
that the random seed
cannot be deduced.
By the use of an
appropriate random
number generation
algorithm, which is
generally known as
secure, it is not possible
to deduce the random
seed.

© Institute for applied information processing and communications
 05.05.2004 34/53

Security Target Version 1.2 IAIK-JCE CC Core 3.1

T.PredictRandomNumber OT.RandomSecure This objective ensures
that the next generated
random number cannot
be predicted.
By the use of an
appropriate random
number generation
algorithm, which is
generally known as
secure, it is not possible
to predict the random
number.

T.HashForgery OT.HashSecure This objective ensures
that the S.Attacker
cannot find collisions.
By the use of an
appropriate hash
algorithm, which is
generally known as
secure, it is not possible
to find collisions.

T.MACForgery OT.MACSecure This objective ensures
that the S.Attacker
cannot forge O.MAC or
recover O.SecretKey
from O.MAC.
By the use of an
appropriate mac
algorithm, which is
generally known as
secure, it is not possible
to forge the mac or to
recover the key.

T.SignatureForgery OT.SignatureSecure This objective ensures
that O.Signature cannot
be forged and
O.PrivateKey cannot be
recovered from
O.Signature.
By the use of an
appropriate signature
algorithm, which is
generally known as
secure, it is not possible
to forge the signature or
to recover the key.

Security Objectives for the Environment
A.Protection OE.EnvironmentIntegrity,

OE.EnvironmentProtection
These objectives ensure
that S.Attacker cannot
read or modify any data.

© Institute for applied information processing and communications
 05.05.2004 35/53

Security Target Version 1.2 IAIK-JCE CC Core 3.1

A.Java_Spec OE.ExecutionEnvironment This objective ensures
that the Java version in
use meets the required
specification.

A.JCE_Spec OE.ExecutionEnvironment This objective ensures
that the JCE version in
use meets the required
specification.

A.KeyManagement OE.KeyProtection,
OE.CorrectKeys

These objectives ensure
an appropriate key
management.

A.Manual OE.ExecutionEnvironment,
OE.TOE_Usage

These objectives ensure
that the TOE is used
and behaves according
to the manual.

A.Train OE.TOEIntegrity This objective ensures
that the integrity of the
TOE can be verified at
any time.
This can be attained by
a suitably qualified
S.Admin.

A.SeedManagement OE.SuitableSeed,
OE.SeedProtection

These objectives ensure
an appropriate seed
management.

T.DeduceData OE.EnvironmentProtection This objective ensures
that data cannot be read
or modified by
S.Attacker before the
TOE receives the data.

T.DeduceKey OE.EnvironmentProtection This objective ensures
that the environment
protects the key.

T.DeduceRandomSeed OE.EnvironmentProtection This objective ensures
that the environment
protects the seed.

T.MACForgery OE.EnvironmentProtection This objective ensures
that the data cannot be
read or modified by
S.Attacker before the
TOE receives the data.

T.SignatureForgery OE.EnvironmentProtection This objective ensures
that the data cannot be
read or modified by
S.Attacker before the
TOE receives the data.

Table 8 Mapping the TOE Security Environment to Security Objectives

Objective: Policies/ Threats/
Assumptions:

Comment:

© Institute for applied information processing and communications
 05.05.2004 36/53

Security Target Version 1.2 IAIK-JCE CC Core 3.1

Security Objectives for the TOE
OT.CipherSecure T.DeduceData,

T.DeduceKey
These threats are countered
by the use of ciphers which
are known as secure.

OT.HashSecure T.HashForgery This threat is countered by
the use of hash algorithms
which are known as secure.

OT.MACSecure T.MACForgery This threat is countered by
the use of secure mac
algorithms.

OT.SignatureSecure T.SignatureForgery This threat is countered by
the use of secure signature
algorithms.

OT.RandomSecure T.PredictRandomNumber,
T.DeduceRandomSeed

This threat is countered by
the use of secure random
number generation
algorithms.

Security Objectives for the Environment
OE.TOEIntegrity A.Train This assumption assures the

integrity of the TOE.
OE.EnvironmentIntegrity A.Protection This assumption assures the

integrity of the environment.
OE.CorrectKeys A.KeyManagement This assumption assures that

the environment provides
correct keys to the TOE.

OE.SuiteableSeed A.SeedManagement This assumption assures that
the environment provides
suitable seeds to the TOE.

OE.ExecutionEnvironment A.Java_Spec,
A.JCE_Spec, A.Manual

These assumptions assure
that the provided execution
environment meets the
required specification.

OE.KeyProtection A.KeyManagement This assumption assures the
protection of the key
material.

OE.SeedProtection A.SeedManagement This assumption assures the
protection of the seed.

OE.EnvironmentProtection A.Protection,
T.DeduceData,
T.DeduceKey,
T.DeduceRandomSeed,
T.SignatureForgery,
T.MACForgery

This assumption assures that
the environment is protected
and helps to avert these
threats.

OE.TOE_Usage A.Manual This assumption assures that
the TOE is used in an
appropriate way.

Table 9 Tracing of Security Objectives to the TOE Security Environment

© Institute for applied information processing and communications
 05.05.2004 37/53

Security Target Version 1.2 IAIK-JCE CC Core 3.1

8.2 Security Requirements Rationale
The TOE security objectives concern the provision of “secure” cryptographic
functionality as further specified in the security functional requirements. They contain
no specific strength-related properties. Therefore, strength of function claim SOF-
high is consistent with the security objectives for the TOE.

8.2.1 Functional Security Requirements Rationale

8.2.1.1 Functional Security Requirements Rationale for the TOE

Objectives: Requirements: Comments:
OT.CipherSecure FCS_COP.1/AES,

FCS_COP.1/TripleDES,
FCS_COP.1/RSACipher,
FCS_COP.1/RSACipherOAEP
FCS_COP.1/RC2,
FCS_COP.1/ARCFOUR,
FDP_ITC.1

The use of the left-mentioned
cryptographic operations
ensures that the generated
O.CipherText is secure.
FDP_ITC.1 is needed to
import cryptographic keys for
the operation.

OT.HashSecure FCS_COP.1/SHA-1,
FCS_COP.1/SHA-256,
FCS_COP.1/SHA-384,
FCS_COP.1/SHA-512,
FCS_COP.1/RIPEMD-160

The use of the left-mentioned
hash functions ensures that
the generated O.Hash is
secure.

OT.MACSecure FCS_COP.1/HMAC,
FDP_ITC.1

The use of this cryptographic
function ensures that the
generated O.MAC is secure.
FDP_ITC.1 is needed to
import cryptographic keys for
the operation.

OT.SignatureSecure FCS_COP.1/RSASignature,
FCS_COP.1/RSASignaturePSS,
FDP_ITC.1

The use of the left-mentioned
cryptographic operations
ensures that the generated
O.Signature is secure.
FDP_ITC.1 is needed to
import cryptographic keys for
the operation.

OT.RandomSecure FCS_RND.1/HashRandom
FCS_RND.1/FipsRandom

The use of the left-mentioned
functions ensures that the
generated O.RandomNumber
is secure.

Table 10 Functional Security Requirements Rationale for the TOE

8.2.1.2 Functional Security Requirements Rationale for the environment

Objectives: Requirements: Comments:
OE.TOEIntegrity R.TOEIntegrity If the left-mentioned

requirement is met, the
TOE integrity is ensured.

OE.ExecutionEnvironment R.ExecutionEnvironment If the left-mentioned

© Institute for applied information processing and communications
 05.05.2004 38/53

Security Target Version 1.2 IAIK-JCE CC Core 3.1

requirement is met, the
execution environment
fulfils the required
conditions as described in
chapter 2.3.7.

OE.CorrectKeys R.CorrectKeys,
FCS_CKM.1

If the left-mentioned
requirements are met, the
use of correct keys is
ensured.

OE.SuitableSeed R.SuitableSeed If the left-mentioned
requirement is met, the use
of applicable seeds is
ensured.

OE.SeedProtection R.SeedProtection,
FDP_RIP.1

If the left-mentioned
requirement is met, the
seed protection is ensured.

OE.EnvironmentIntegrity R.EnvironmentIntegrity If the left-mentioned
requirement is met, the
environment integrity is
ensured.

OE.TOE_Usage R.TOE_Usage If the left-mentioned
requirement is met, the
right TOE usage is
ensured.

OE.KeyProtection R.KeyProtection,
FCS_CKM.4.1

If the left-mentioned
requirements are met, the
protection of the key is
ensured.

OE.EnvironmentProtection R.EnvironmentProtection If the left-mentioned
requirement is met, the
environment protection is
ensured.

Table 11 Functional Security Requirements Rationale for the environment

8.2.2 Security Assurance Requirements Rationale
To meet the requirements of an application for the generation and the verification of
qualified electronic signatures as defined in the legislation of the European Union
[EU_directive], [SigG] and [SigV] the selected evaluation level is EAL3 augmented
by AVA_VLA.4, ADV_IMP.1, ADO_DEL.2, ADV_LLD.1, ALC_TAT.1 and
AVA_MSU.2 and the selected strength of functions is high (SOF-high).

8.3 TOE Summary Specification Rationale

8.3.1 TOE Security Functions Rationale
The security functions of the TOE reach SOF-high.
The TOE should be able to resist attacks from attackers with sophisticated
knowledge. Given that the TOE is generally available the attacker is assumed to have
unlimited time to set up his attacks. The attacker is assumed to use equipment which

© Institute for applied information processing and communications
 05.05.2004 39/53

Security Target Version 1.2 IAIK-JCE CC Core 3.1

is state of the art. The data which is processed by the TOE is assumed to be of high
importance.
To counter these threats the TOE uses cryptographic functions.

Security
Functions:

Mechanism: Min.-
Key-
Size:

Security Functional
Requirements:

SOF:

TSF.Hash SHA-1
SHA-256
SHA-384
SHA-512
RIPEMD-160

 FCS_COP.1/SHA-1
FCS_COP.1/SHA-256
FCS_COP.1/SHA-384
FCS_COP.1/SHA-512
FCS_COP.1/RIPEMD-160

high
high
high
high
high

TSF.Cipher AES
TripleDES
RC2
ARCFOUR
RSA PKCS#1 v1.5
RSA PKCS#1 v2.1
OAEP

128 bit
112 bit
128 bit
128 bit
1024 bit
1024 bit

FCS_COP.1/AES
FCS_COP.1/TripleDES
FCS_COP.1/RC2
FCS_COP.1/ARCFOUR
FCS_COP.1/RSACipher
FCS_COP.1/RSACipherOAEP

FDP_ITC.1

TSF.Signature RSA PKCS#1 v1.5
with SHA-1, SHA-
256, SHA-384,
SHA-512,
RIPEMD-160

RSA PKCS#1 v2.1
PSS with SHA-1,
SHA-256, SHA-
384, SHA-512,
RIPEMD-160

1024 bit

1024 bit

FCS_COP.1/RSASignature

FCS_COP.1/RSASignaturePSS

FDP_ITC.1

TSF.Random FCS_RND.1/HashRandom
FCS_RND.1/FipsRandom

high
high

TSF.MAC HMAC with SHA-
1, SHA-256, SHA
384, SHA 512,
RipeMD-160

128 bit FCS_COP.1/HMAC
FDP_ITC.1

high

Table 12 Assurance Security Requirements Rationale

There is a one to one correspondence between the TSF and the SFR with the
exception of FDP_ITC.1. This requirement is needed to import keys for cryptographic
operations and is implicitly fulfilled by the corresponding TSF (Cipher, Signature,
MAC). That means that the TSF are suitable to meet the security functional
requirements and work together without any conflict.

8.4 Dependency Rationale
Requirement: Dependencies:

© Institute for applied information processing and communications
 05.05.2004 40/53

Security Target Version 1.2 IAIK-JCE CC Core 3.1

Functional Requirements
FCS_COP.1/SHA-1 [FDP_ITC.1 or FCS.CKM.1],

FMT_MSA.2, FCS_CKM.4
FCS_COP.1/SHA-256 [FDP_ITC.1 or FCS.CKM.1],

FMT_MSA.2, FCS_CKM.4
FCS_COP.1/SHA-384 [FDP_ITC.1 or FCS.CKM.1],

FMT_MSA.2, FCS_CKM.4
FCS_COP.1/SHA-512 [FDP_ITC.1 or FCS.CKM.1],

FMT_MSA.2, FCS_CKM.4
FCS_COP.1/RIPEMD-160 [FDP_ITC.1 or FCS.CKM.1],

FMT_MSA.2, FCS_CKM.4
FCS_COP.1/AES [FDP_ITC.1 or FCS.CKM.1],

FMT_MSA.2, FCS_CKM.4
FCS_COP.1/TripleDES [FDP_ITC.1 or FCS.CKM.1],

FMT_MSA.2, FCS_CKM.4
FCS_COP.1/RC2 [FDP_ITC.1 or FCS.CKM.1],

FMT_MSA.2, FCS_CKM.4
FCS_COP.1/ARCFOUR [FDP_ITC.1 or FCS.CKM.1],

FMT_MSA.2, FCS_CKM.4
FCS_COP.1/RSACipher [FDP_ITC.1 or FCS.CKM.1],

FMT_MSA.2, FCS_CKM.4
FCS_COP.1/RSACipherOAEP [FDP_ITC.1 or FCS.CKM.1],

FMT_MSA.2, FCS_CKM.4
FCS_COP.1/RSASignature [FDP_ITC.1 or FCS.CKM.1],

FMT_MSA.2, FCS_CKM.4
FCS_COP.1/RSASignaturePSS [FDP_ITC.1 or FCS.CKM.1],

FMT_MSA.2, FCS_CKM.4
FCS_CKM.4/AES [FDP_ITC.1 or FCS.CKM.1],

FMT_MSA.2
FCS_CKM.4/TripleDES [FDP_ITC.1 or FCS.CKM.1],

FMT_MSA.2
FCS_CKM.4/RC2 [FDP_ITC.1 or FCS.CKM.1],

FMT_MSA.2
FCS_CKM.4/ARCFOUR [FDP_ITC.1 or FCS.CKM.1],

FMT_MSA.2
FCS_CKM.4/RSACipher [FDP_ITC.1 or FCS.CKM.1],

FMT_MSA.2
FCS_CKM.4/RSACipherOAEP [FDP_ITC.1 or FCS.CKM.1],

FMT_MSA.2
FCS_CKM.4/RSASignature [FDP_ITC.1 or FCS.CKM.1],

FMT_MSA.2
FCS_CKM.4/RSASignaturePSS [FDP_ITC.1 or FCS.CKM.1],

FMT_MSA.2
FCS_CKM.4/HMAC [FDP_ITC.1 or FCS.CKM.1],

FMT_MSA.2
FCS_CKM.1/AES [FCS_CKM.2 or FCS_COP.1],

FCS_CKM.4, FMT_MSA.2
FCS_CKM.1/TripleDES [FCS_CKM.2 or FCS_COP.1],

FCS_CKM.4, FMT_MSA.2

© Institute for applied information processing and communications
 05.05.2004 41/53

Security Target Version 1.2 IAIK-JCE CC Core 3.1

FCS_CKM.1/RC2 [FCS_CKM.2 or FCS_COP.1],
FCS_CKM.4, FMT_MSA.2

FCS_CKM.1/ARCFOUR [FCS_CKM.2 or FCS_COP.1],
FCS_CKM.4, FMT_MSA.2

FCS_CKM.1/RSACipher [FCS_CKM.2 or FCS_COP.1],
FCS_CKM.4, FMT_MSA.2

FCS_CKM.1/RSACipherOAEP [FCS_CKM.2 or FCS_COP.1],
FCS_CKM.4, FMT_MSA.2

FCS_CKM.1/RSASignature [FCS_CKM.2 or FCS_COP.1],
FCS_CKM.4, FMT_MSA.2

FCS_CKM.1/RSASignaturePSS [FCS_CKM.2 or FCS_COP.1],
FCS_CKM.4, FMT_MSA.2

FCS_CKM.1/HMAC [FCS_CKM.2 or FCS_COP.1],
FCS_CKM.4, FMT_MSA.2

FDP_ITC.1 [FDP_ACC.1 or FDP_IFC.1],
FMT_MSA.3

FCS_RND.1/HashRandom FPT_TST.1
FCS_RND.1/FipsRandom FPT_TST.1
FCS_COP.1/HMAC [FDP_ITC.1 or FCS.CKM.1],

FMT_MSA.2, FCS_CKM.4
Assurance Requirements

ACM_CAP.3 ACM_SCP.1, ALC_DVS.1
ACM_SCP.1 ACM_CAP.3
ADO_IGS.1 AGD_ADM.1
ADV_FSP.1 ADV_RCR.1
ADV_HLD.2 ADV_FSP.1, ADV_RCR.1
AGD_ADM.1 ADV_FSP.1
AGD_USR.1 ADV_FSP.1
ATE_COV.2 ADV_FSP.1, ATE_FUN.1
ATE_DPT.1 ADV_HLD.1, ATE_FUN.1
ATE_IND.2 ADV_FSP.1, AGD_ADM.1,

AGD_USR.1, ATE_FUN.1
AVA_MSU.2 ADO_IGS.1, ADV_FSP.1,

AGD_ADM.1, AGD_USR.1
AVA_SOF.1 ADV_FSP.1, ADV_HLD.1
AVA_VLA.4 ADV_FSP.1, ADV_HLD.2,

AGD_ADM.1, AGD_USR.1
Table 13 Functional and Assurance Requirements Dependencies

TSF.Hash

FCS_COP.1/SHA-1:

• FDP_ITC.1/SHA-1 Import of user data without security attributes:
The computation of SHA-1 does not require the import of user data in terms of
cryptographic keys.

© Institute for applied information processing and communications
 05.05.2004 42/53

Security Target Version 1.2 IAIK-JCE CC Core 3.1

• FCS_CKM.1/SHA-1 Cryptographic key generation:
There are no cryptographic keys required and thus there is no requirement for this
security functional component.

• FCS_CKM.4/SHA-1 Cryptographic key destruction:
Since the computation of SHA-1 does not require any cryptographic keys this
component can be omitted.

• FMT_MSA.2/SHA-1 Secure security attributes:
The hash computation does not require cryptographic keys and therefore no
management of the security attributes. This security functional component is not
needed.

FCS_COP.1/SHA-256:
Analogous to the points as described in FCS_COP.1/SHA-1.

FCS_COP.1/SHA-384:
Analogous to the points as described in FCS_COP.1/SHA-1.

FCS_COP.1/SHA-512:
Analogous to the points as described in FCS_COP.1/SHA-1.

FCS_COP.1/RIPEMD-160:
Analogous to the points as described in FCS_COP.1/SHA-1.

TSF.Cipher

FCS_COP.1/AES:

• FDP_ITC.1/AES Import of user data without security attributes:
See chapter 5.1.2 FDP_ITC.1.

• FCS_CKM.1/AES Cryptographic key generation:
The TOE does not generate keys itself. The environment is responsible for the key
generation, so the requirement is included in chapter 5.3 “Security Requirements for
the IT Environment”.

• FCS_CKM.4/AES Cryptographic key destruction:
The TOE does not destroy keys itself. The environment is responsible for the key
destruction, so the requirement is included in chapter 5.3 “Security Requirements for
the IT Environment”.

• FMT_MSA.2/AES Secure security attributes:
There are no security attributes related with the cryptographic keys (see
FDP_ITC.1/AES).

FCS_COP.1/TripleDES:
Analogous to the points as described in FCS_COP.1/AES.

© Institute for applied information processing and communications
 05.05.2004 43/53

Security Target Version 1.2 IAIK-JCE CC Core 3.1

FCS_COP.1/RC2:
Analogous to the points as described in FCS_COP.1/AES.

FCS_COP.1/ARCFOUR:
Analogous to the points as described in FCS_COP.1/AES.

FCS_COP.1/RSACipher:
Analogous to the points as described in FCS_COP.1/AES.

FCS_COP.1/RSACipherOAEP:
Analogous to the points as described in FCS_COP.1/AES.

TSF.Signature

FCS_COP.1/RSASignature:

• FDP_ITC.1/RSASignature Import of user data without security
attributes:

See chapter 5.1.2 FDP_ITC.1.

• FCS_CKM.1/RSASignature Cryptographic key generation:
The TOE does not generate keys itself. The environment is responsible for the key
generation, so the requirement is included in chapter 5.3 “Security Requirements for
the IT Environment”.

• FCS_CKM.4/RSASignature Cryptographic key destruction:
The TOE does not destroy keys itself. The environment is responsible for the key
destruction, so the requirement is included in chapter 5.3 “Security Requirements for
the IT Environment”.

• FMT_MSA.2/RSASignature Secure security attributes:
There are no security attributes related with the cryptographic keys (see
FDP_ITC.1/RSASignature).

FCS_COP.1/RSASignaturePSS:
Analogous to the points as described in FCS_COP.1/RSASignature.

TSF.Random

FCS_RND.1/HashRandom:

• FPT_TST.1/HashRandom TSF testing
This dependency is intended for true random number generators (TRNG). Since the
TOE implements a deterministic random number generator (DRNG) and the seed
handling is done outside the TOE this functional requirement is not required.

© Institute for applied information processing and communications
 05.05.2004 44/53

Security Target Version 1.2 IAIK-JCE CC Core 3.1

FCS_RND.1/FipsRandom:

• FPT_TST.1/FipsRandom TSF testing
This dependency is intended for true random number generators (TRNG). Since the
TOE implements a deterministic random number generator (DRNG) and the seed
handling is done outside the TOE this functional requirement is not required.

TSF.MAC

FCS_COP.1/HMAC:

• FDP_ITC.1/HMAC Import of user data without security attributes:
See chapter 5.1.2 FDP_ITC.1.

• FCS_CKM.1/HMAC Cryptographic key generation:
The TOE does not generate keys itself. The environment is responsible for the key
generation, so the requirement is included in chapter 5.3 “Security Requirements for
the IT Environment”.

• FCS_CKM.4/HMAC Cryptographic key destruction:
The TOE does not destroy keys itself. The environment is responsible for the key
destruction, so the requirement is included in chapter 5.3 “Security Requirements for
the IT Environment”.

• FMT_MSA.2/HMAC Secure security attributes:
There are no security attributes related with the cryptographic keys (see
FDP_ITC.1/HMAC).

FCS_CKM.1 Cryptographic key generation

FCS_CKM.1/AES:

• FCS_COP.1/AES
Is included in chapter 5.1.1 “Cryptographic support” as security requirement for the
TOE.

• FCS_CKM.4/AES
Is included in chapter 5.3 “Security Requirements for the environment”.

• FMT_MSA.2/AES
There are no security attributes related with the cryptographic keys and therefore this
functional component is not needed.

FCS_CKM.1/TripleDES:
Analogous to the points as described in FCS_CKM.1/AES.

FCS_CKM.1/RC2:
Analogous to the points as described in FCS_CKM.1/AES.

© Institute for applied information processing and communications
 05.05.2004 45/53

Security Target Version 1.2 IAIK-JCE CC Core 3.1

FCS_CKM.1/ARCFOUR:
Analogous to the points as described in FCS_CKM.1/AES.

FCS_CKM.1/RSACipher:
Analogous to the points as described in FCS_CKM.1/AES.

FCS_CKM.1/RSACipherOAEP:
Analogous to the points as described in FCS_CKM.1/AES.

FCS_CKM.1/RSASignature:
Analogous to the points as described in FCS_CKM.1/AES.

FCS_CKM.1/RSASignaturePSS:
Analogous to the points as described in FCS_CKM.1/AES.

FCS_CKM.1/HMAC:
Analogous to the points as described in FCS_CKM.1/AES.

FDP_ITC.1

• FDP_ACC.1 Subset access control:
The TOE does not provide any access control itself. The access control is subject to
the S.JavaVM. This functional component is therefore not required.

• FDP_IFC.1 Subset information flow control:
For our purposes no information control is needed and therefore this functional
component is not required.

• FMT_MSA.3 Static attribute initialisation:
For our purposes no attributes are needed and therefore this functional component is
not needed.

8.5 Security Functional Requirements Grounding in
Objectives

Requirements: Objectives:
FCS_COP.1/SHA-1 OT.HashSecure
FCS_COP.1/SHA-256 OT.HashSecure
FCS_COP.1/SHA-384 OT.HashSecure
FCS_COP.1/SHA-512 OT.HashSecure
FCS_COP.1/RIPEMD-160 OT.HashSecure
FCS_COP.1/AES OT.CipherSecure
FCS_COP.1/TripleDES OT.CipherSecure
FCS_COP.1/RC2 OT.CipherSecure
FCS_COP.1/ARCFOUR OT.CipherSecure
FCS_COP.1/RSACipher OT.CipherSecure
FCS_COP.1/RSACipherOAEP OT.CipherSecure
FCS_COP.1/RSASignature OT.SignatureSecure

© Institute for applied information processing and communications
 05.05.2004 46/53

Security Target Version 1.2 IAIK-JCE CC Core 3.1

FCS_COP.1/RSASignaturePSS OT.SignatureSecure
FCS_COP.1/HMAC OT.MACSecure
FCS_RND.1/FipsRandom OT.RandomSecure
FCS_RND.1/HashRandom OT.RandomSecure
FDP_RIP.1.1 OE.KeyProtection
FCS_CKM.4.1 OE.KeyProtection

Table 14 Requirements to Objectives Mapping

© Institute for applied information processing and communications
 05.05.2004 47/53

Security Target Version 1.2 IAIK-JCE CC Core 3.1

9 Appendix A – References
[AIS20] Bundesamt für Sicherheit in der Informationstechnik (BSI),

Application Notes and Interpretation of the Scheme (AIS), AIS
20, Version 1.0: Functionality classes and evaluation
methodology for deterministic random number generators,
Bundesamt für Sicherheit in der Informationstechnik (BSI),
December 1999

[AIS31] Bundesamt für Sicherheit in der Informationstechnik (BSI),
Application Notes and Interpretation of the Scheme (AIS), AIS
31, Version 1.0: Functionality classes and evaluation
methodology for physical random number generators,
Bundesamt für Sicherheit in der Informationstechnik (BSI),
September 2001

[CC] ISO International Standard (IS) 15408:1999, Common Criteria
for Information Technology Security Evaluation (Comprising
Parts 1-3, [CC1], [CC2], [CC3]CC 2.1), Common Criteria
Implementation Board (CCIB) and the International Standards
Organization (ISO), JTC1/SC27/WG3
available online at http://www.commoncriteria.de, cited 15
January 2004

[CC1] Common Criteria for Information Technology Security
Evaluation Part 1: Introduction and General Model CCIMB-99-
031, Version 2.1, August 1999, Common Criteria
Implementation Board (CCIB)
available online at http://www.commoncriteria.de, cited 15
January 2004

[CC2] Common Criteria for Information Technology Security
Evaluation Part 2: Security Functional Requirements CCIMB-
99-032, Version 2.1, August 1999, Common Criteria
Implementation Board (CCIB)
available online at http://www.commoncriteria.de, cited 15
January 2004

[CC3] Common Criteria for Information Technology Security
Evaluation Part 3: Security Assurance Requirements CCIMB-
99-033, Version 2.1, August 1999, Common Criteria
Implementation Board (CCIB)
available online at http://www.commoncriteria.de, cited 15
January 2004

[CRYPTO SPEC] Java Cryptography Architecture, API Specification & Reference,
SUN Microsystems, Inc.
http://java.sun.com/security/index.html, October 2003, cited 15
January 2004

[EU_directive] Directive 1999/93/EC of the european parlament and of the
council,
13 December 1999,
on a Community framework for electronic signatures

© Institute for applied information processing and communications
 05.05.2004 48/53

Security Target Version 1.2 IAIK-JCE CC Core 3.1

[FIPS 46-3] U.S. Department Of Commerce, Federal Information Processing
Standards Publication: Data Encryption Standard (DES), FIPS
PUB 46-3, U.S. Department Of Commerce, 199925 October
251999, http://csrc.nist.gov/publications/fips/fips46-3/fips46-
3.pdf, cited 15 January 2004

[FIPS PUB 180-1] U.S. Department Of Commerce, Federal Information Processing
Standards Publication: Secure Hash Standard, FIPS PUB 180-1,
U.S. Department Of Commerce, 171995 April 1995 17,
http://csrc.nist.gov/publications/fips/fips180-1/fip180-1.pdf,
cited 15 January 2004

[FIPS PUB 180-2] U.S. Department Of Commerce, Federal Information Processing
Standards Publication: Secure Hash Standard, FIPS PUB 180-2,
U.S. Department Of Commerce, 262001 November 2001 26,
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf,
cited 15 January 2004

[FIPS PUB 197] U.S. Department Of Commerce, Federal Information Processing
Standards Publication: Advanced Encryption Standard, FIPS
PUB 197, U.S. Department Of Commerce, 26 November 2001
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf, cited
15 January 2004

[IETF-Draft-
Kaukonen]

K.Kaukonen, R.Thayer: A Stream Cipher Encryption Algorithm
"Arcfour", IETF draftInternet Draft: draft-kaukonen-cipher-
arcfour-03.txt, 14 July 1999.

[ISO/IEC 10118-3] ISO/IEC 10118-3:2003, Information technology -- Security
techniques -- Hash-functions -- Part 3: Dedicated hash-functions,
ISO/IEC, JTC 1/SC 27, 14 November 2003Dedicated hash-
functions, Reference number: ISO/IEC FDIS 10118-3:2003(E),
Final Draft: http://www.ncits.org/ref-docs/FDIS_10118-3.pdf,
cited 15 January 2004

[JavaAPI1.1] Java Platform 1.1 Core API Specification, SUN Microsystems,
Inc., Palo Alto, California, 1995-1999,
http://java.sun.com/products/archive/jdk/1.1/index.html, cited 15
January 2004

[JavaAPI1.2] Java 2 Platform, Standard Edition, v1.2.2 API Specification,
SUN Microsystems, Inc., 1999,
http://java.sun.com/products/jdk/1.2/docs/api/index.html, cited
15 January 2004

[JavaAPI1.3] Java 2 Platform, Standard Edition, v 1.3.1 API Specification,
SUN Microsystems, Inc., 2001,
http://java.sun.com/j2se/1.3/docs/api/index.html, cited 15
January 2004

[JavaAPI1.4] Java 2 Platform, Standard Edition, v 1.4.2 API Specification,
SUN Microsystems, Inc., 2003,
http://java.sun.com/j2se/1.4.2/docs/api/, cited 15 January 2004

[JCA1.1-API] JavaTM Cryptography Architecture API, JavaDoc of package
java.security, JavaTM Platform API Specification, version 1.1,
SUN Microsystems, Inc.

[JCA1.1-REF] JavaTM Cryptography Architecture API Specification &
Reference, JavaTM Specification, version 1.1, SUN
Microsystems, Inc.

© Institute for applied information processing and communications
 05.05.2004 49/53

http://www.ncits.org/ref-docs/FDIS_10118-3.pdf
http://java.sun.com/products/archive/jdk/1.1/index.html

Security Target Version 1.2 IAIK-JCE CC Core 3.1

[JCA1.2-API] JavaTM Cryptography Architecture API, JavaDoc of package
java.security, JavaTM Platform API Specification, version 1.2,
SUN Microsystems, Inc.

[JCA1.2-REF] JavaTM Cryptography Architecture API Specification &
Reference, JavaTM 2 SDK, Standard Edition, v 1.2, SUN
Microsystems, Inc.

[JCA1.3-API] JavaTM Cryptography Architecture API, JavaDoc of package
java.security, JavaTM Platform API Specification, version 1.3,
SUN Microsystems, Inc.

[JCA1.3-REF] JavaTM Cryptography Architecture API Specification &
Reference, JavaTM 2 SDK, Standard Edition, v 1.3, SUN
Microsystems, Inc.

[JCA1.4-API] JavaTM Cryptography Architecture API, JavaDoc of package
java.security, JavaTM Platform API Specification, version 1.4,
SUN Microsystems, Inc.,
http://java.sun.com/j2se/1.4.2/docs/api/java/security/package-
summary.html

[JCA1.4-PROV] How to Implement a Provider for the JavaTM Cryptography
Architecture, JavaTM Platform Specification, version 1.4, SUN
Microsystems, Inc.,
http://java.sun.com/j2se/1.4.2/docs/guide/security/HowToImplA
Provider.html

[JCA1.4-REF] JavaTM Cryptography Architecture API Specification &
Reference, JavaTM Platform Specification, version 1.4, SUN
Microsystems, Inc.,
http://java.sun.com/j2se/1.4/docs/guide/security/CryptoSpec.htm
l

[JCE1.4-API] JavaTM Cryptography Extension API, JavaDoc of package
java.security, JavaTM Platform API Specification, version 1.4,
SUN Microsystems, Inc.,
http://java.sun.com/j2se/1.4.2/docs/api/javax/crypto/package-
summary.html

[JCE1.4-PROV] How to Implement a Provider for the JavaTM Cryptography
Extension, JavaTM Platform Specification, version 1.4, SUN
Microsystems, Inc.,
http://java.sun.com/j2se/1.4.2/docs/guide/security/jce/HowToIm
plAJCEProvider.html

[JCE1.4-REF] JavaTM Cryptography Extension (JCE) API Specification &
Reference, JavaTM 2 Standard Edition, version 1.4, SUN
Microsystems, Inc.
http://java.sun.com/j2se/1.4.2/docs/guide/security/jce/JCERefGu
ide.html

[JCE1.2.2-REF] JavaTM Cryptography Extension (JCE) API Specification &
Reference,
version 1.2.2, SUN Microsystems, Inc.,
http://java.sun.com/products/jce/

[JCE1.2.1-REF] JavaTM Cryptography Extension (JCE) API Specification &
Reference,
version 1.2.1, SUN Microsystems, Inc.,
http://java.sun.com/products/jce/

© Institute for applied information processing and communications
 05.05.2004 50/53

Security Target Version 1.2 IAIK-JCE CC Core 3.1

[JCE1.2-REF] JavaTM Cryptography Extension (JCE) API Specification &
Reference,
version 1.2, SUN Microsystems, Inc.,
http://java.sun.com/products/jce/

[JVMSpec1] Tim Lindholm, Frank Yellin: Tim Lindholm, Frank Yellin: The
Java Virtual Machine Specification, Addison-Wesley Pub Co,
September 1996, ASIN: 020163452X
http://java.sun.com/docs/books/vmspec/index.html

[JVMSpec2] Tim Lindholm, Frank Yellin: Tim Lindholm, Frank Yellin: The
Java Virtual Machine Specification (2nd Edition), Addison-
Wesley Pub Co, 2nd edition , April 1999, ISBN: 0201432943
http://java.sun.com/docs/books/vmspec/index.html, cited 15
January 2004

[PKCS#1v1.5] PKCS#1 v1.5: RSA Encryption Standard
RSA Laboratories; 1 November 1, 1993
http://www.rsasecurity.com/rsalabs/pkcs/pkcs-1/, cited 15
January 2004

[PKCS#1v2.1] PKCS#1 v2.1: RSA Cryptography Standard
RSA Laboratories; 14 June 14, 2002
http://www.rsasecurity.com/rsalabs/pkcs/pkcs-1/, cited 15
January 2004

[RFC 2104] H. Krawczyk, M. Bellare, R. Canetti: HMAC: Keyed-Hashing
for Message Authentication, Network Working Group, February
1997, http://www.ietf.org/rfc/rfc2104.txt, cited 15 January 2004

[RFC 2268] R. Rivest: A Description of the RC2(r) Encryption Algorithm,
Network Working Group, March 1998,
http://www.ietf.org/rfc/rfc2268.txt, cited 15 January 2004

[SigG] Gesetz ueber Rahmenbedingungen fuer elektronische Signaturen
und zur Aenderung weiterer Vorschriften, BGBl. I, S. 876, the
German Bundestag, 16 Mai 2001 (German Digital Signature
Act), 16. Mai 2001
http://www.bmwa.bund.de/Navigation/Service/Gesetze/rechtsgr
undlagen-informationsgesellschaft.html, cited 15 January 2004

[SigG-Alg] Bekanntmachung zur elektronischen Signatur
nach dem Signaturgesetz und der Signaturverordnung
(Uebersicht ueber geeignete Algorithmen),
Regulierungsbehoerde für Telekommunikation und Post, 13
February 2004 in Bundesanzeiger Nr. 30, S. 2537-2538

[SigV] Verordnung zur elektronischen Signatur, BGBl. I S. 3074, the
German Government, 16 November 2001
(Digital Signature Ordinance [(Signaturverordnung – SigV])),
16. November 2001
http://www.bmwa.bund.de/Navigation/Service/Gesetze/rechtsgr
undlagen-informationsgesellschaft.html, cited 15 January 2004

© Institute for applied information processing and communications
 05.05.2004 51/53

Security Target Version 1.2 IAIK-JCE CC Core 3.1

10 Appendix C – Acronyms
A.XXX Assumption
CC Common Criteria for Information

Technology Security Evaluation
(referenced to as [CC])

CEM Common Methodology for Information
Technology Security Evaluation

CGA Certificate Generation Application
CMS Cryptographic Message Syntax
EAL Evaluation Assurance Level
O.XXX Objects (Assets)
OT.XXX Security Objective for the TOE
OE.XXX Security Objective for the Environment
PP Protection Profile
SF Security Function
SFR Security Functional Requirement
SOF Strength of Function
SSCD Secure Signature Creation Device
ST Security Target
T.XXX Threat
TOE Target of Evaluation
TSC TSF Scope of Control
TSF TOE Security Functions
TSP TOE Security Policy
XML Extensible Markup Language

© Institute for applied information processing and communications
 05.05.2004 52/53

Security Target Version 1.2 IAIK-JCE CC Core 3.1

11 Appendix E - Definition of the Family FCS_RND
Definition of a metric for Random Numbers is not provided in any of the classes of
CC part 2. Therefore the component FCD_RND.1 of the German certification scheme
document AIS 31 “A proposal for: Functionality classes and evaluation methodology
for true (physical) random number generators” of BSI has been selected here.

11.1 FCS_RND generation of random numbers
Family behaviour
This family defines quality metrics for generating random numbers intended for
cryptographic purposes.

Component levelling

FCS_RND.1 The generation of random numbers using TSFs requires the random
numbers to meet the defined quality metrics.

Management: FCS_RND.1
No management functions are provided for.

Logging: FCS_RND.1
There are no events identified that should be auditable if FCS_RND generation of
random numbers data generation is included in the PP/ST.

FCS_RND.1 Quality metrics for random numbers
Is hierarchical to: no other components.

FCS_RND.1.1 The TSFs shall provide a mechanism for generating random
numbers that meet [assignment: a defined quality metric].

FCS_RND.1.2 The TSFs shall be able to enforce the use of TSF-generated
random numbers for [assignment: list of TSF functions].

Dependencies: FPT_TST.1 TSF testing.

© Institute for applied information processing and communications
 05.05.2004 53/53

	Table of Contents:
	List of Tables
	List of Figures
	ST Introduction
	ST Identification
	ST Overview
	CC Conformance

	TOE Description
	Product type
	TOE structure
	General TOE functionality
	Hash related functionality
	MAC related functionality
	Digital Signature related functionality
	Encryption functionality
	Random Number Generator related functionality
	TOE Boundary
	TOE Environment

	Qualified Electronic Signatures

	TOE Security Environment
	Assumptions
	Threats
	Organization Security Policies
	Subjects, Objects
	Subjects
	Objects

	Security Objectives
	Security Objectives for the TOE
	Security Objectives for the Environment

	IT Security Requirements
	TOE Security Functional Requirements
	Cryptographic support (FCS)
	Cryptographic operation FCS_COP.1/SHA-1
	Cryptographic operation FCS_COP.1/SHA-256
	Cryptographic operation FCS_COP.1/SHA-384
	Cryptographic operation FCS_COP.1/SHA-512
	Cryptographic operation FCS_COP.1/RIPEMD-160
	Cryptographic operation FCS_COP.1/AES
	Cryptographic operation FCS_COP.1/TripleDES
	Cryptographic operation FCS_COP.1/RC2
	Cryptographic operation FCS_COP.1/ARCFOUR
	Cryptographic operation FCS_COP.1/RSACipher
	Cryptographic operation FCS_COP.1/RSACipherOAEP
	Cryptographic operation FCS_COP.1/RSASignature
	Cryptographic operation FCS_COP.1/RSASignaturePSS
	Cryptographic operation FCS_RND.1/FipsRandom

	User Data Protection (FDP)
	Import of user data without security attributes FDP_ITC.1

	TOE Security Assurance Requirements
	Configuration management (ACM)
	Authorisation controls (ACM_CAP.3)
	TOE CM coverage (ACM_SCP.1)

	Delivery and operation (ADO)
	Detection of modification ADO_DEL.2
	Installation, generation, and start-up procedures (ADO_IGS.1

	Development (ADV)
	Informal functional specification (ADV_FSP.1)
	Subset of the implementation of the TSF (ADV_IMP.1)
	Security enforcing high-level design (ADV_HLD.2)
	Descriptive low-level design (ADV_LLD.1)
	Informal correspondence demonstration (ADV_RCR.1)

	Guidance documents (AGD)
	Administrator guidance (AGD_ADM.1)
	User guidance (AGD_USR.1)

	Life cycle support (ALC)
	Well-defined development tools (ALC_TAT.1)
	Identification of security measures (ALC_DVS.1)

	Tests (ATE)
	Analysis of coverage (ATE_COV.2)
	Testing: high-level design (ATE_DPT.1)
	Functional testing (ATE_FUN.1)
	Independent testing – sample (ATE_IND.2)

	Vulnerability assessment (AVA)
	Validation of analysis (AVA_MSU.2)
	Strength of TOE security function evaluation (AVA_SOF.1)
	Highly resistant (AVA_VLA.4)

	Security Requirements for the Environment
	General Requirements for the Environment
	R.KeyProtection
	R.CorrectKeys
	R.SuitableSeed:
	R.SeedProtection
	R.ExecutionEnvironment
	R.EnvironmentProtection
	R.TOE_Usage
	R.TOEIntegrity

	Security Requirements for the IT Environment
	Subset residual information protection (FDP_RIP.1)
	FDP_RIP.1.1

	Cryptographic key generation (FCS_CKM.1)
	FCS_CKM.1/AES
	FCS_CKM.1/TripleDES
	FCS_CKM.1/RC2
	FCS_CKM.1/ARCFOUR
	FCS_CKM.1/RSACipher
	FCS_CKM.1/RSACipherOAEP
	FCS_CKM.1/RSASignature
	FCS_CKM.1/RSASignaturePSS
	FCS_CKM.1/HMAC

	Cryptographic key destruction (FCS_CKM.4)
	FCS_CKM.4/AES
	FCS_CKM.4/TripleDES
	FCS_CKM.4/RC2
	FCS_CKM.4/ARCFOUR
	FCS_CKM.4/RSACipher
	FCS_CKM.4/RSACipherOAEP
	FCS_CKM.4/RSASignature
	FCS_CKM.4/RSASignaturePSS
	FCS_CKM.4/HMAC

	T

	TOE Summary Specification
	TOE Security Functions
	TSF.Hash (SOF-high)
	TSF.Cipher
	Symmetric Functions:
	Asymmetric Functions:

	TSF.Signature
	TSF.Random (SOF-high)
	TSF.MAC (SOF-high)

	Assurance Measures

	PP Claims
	Rationale
	Security Objectives Rationale
	Security Requirements Rationale
	Functional Security Requirements Rationale
	Functional Security Requirements Rationale for the TOE
	Functional Security Requirements Rationale for the environme

	Security Assurance Requirements Rationale

	TOE Summary Specification Rationale
	TOE Security Functions Rationale

	Dependency Rationale
	TSF.Hash
	FDP_ITC.1/SHA-1 Import of user data without security attribu
	FCS_CKM.1/SHA-1 Cryptographic key generation:
	FCS_CKM.4/SHA-1 Cryptographic key destruction:
	FMT_MSA.2/SHA-1 Secure security attributes:
	FCS_COP.1/SHA-256:

	TSF.Cipher
	FDP_ITC.1/AES Import of user data without security attribute
	FCS_CKM.1/AES Cryptographic key generation:
	FCS_CKM.4/AES Cryptographic key destruction:
	FMT_MSA.2/AES Secure security attributes:
	FCS_COP.1/TripleDES:

	TSF.Signature
	FDP_ITC.1/RSASignature Import of user data without security
	FCS_CKM.1/RSASignature Cryptographic key generation:
	FCS_CKM.4/RSASignature Cryptographic key destruction:
	FMT_MSA.2/RSASignature Secure security attributes:
	FCS_COP.1/RSASignaturePSS:

	TSF.Random
	FCS_RND.1/HashRandom:
	FPT_TST.1/HashRandom TSF testing
	FCS_RND.1/FipsRandom:
	FPT_TST.1/FipsRandom TSF testing

	TSF.MAC
	FCS_COP.1/HMAC:
	FDP_ITC.1/HMAC Import of user data without security attribut
	FCS_CKM.1/HMAC Cryptographic key generation:
	FCS_CKM.4/HMAC Cryptographic key destruction:
	FMT_MSA.2/HMAC Secure security attributes:

	FCS_CKM.1 Cryptographic key generation
	FCS_CKM.1/AES:
	FCS_COP.1/AES
	FCS_CKM.4/AES
	FMT_MSA.2/AES
	FCS_CKM.1/TripleDES:
	FCS_CKM.1/RC2:
	FCS_CKM.1/ARCFOUR:
	FCS_CKM.1/RSACipher:
	FCS_CKM.1/RSACipherOAEP:
	FCS_CKM.1/RSASignature:
	FCS_CKM.1/RSASignaturePSS:
	FCS_CKM.1/HMAC:
	FDP_ITC.1
	FDP_ACC.1 Subset access control:
	FDP_IFC.1 Subset information flow control:
	FMT_MSA.3 Static attribute initialisation:

	Security Functional Requirements Grounding in Objectives

	Appendix A – References
	Appendix C – Acronyms
	Appendix E - Definition of the Family FCS_RND
	FCS_RND generation of random numbers

