

IAIK – Security Target Version 1.2

IAIK-JCE CC Core 3.1 05 May 2004

Table of Contents:

TABLE OF CONTENTS:2
LIST OF TABLES5
LIST OF FIGURES
1 ST INTRODUCTION6
1.1 ST Identification
1.2 ST Overview
1.3 CC Conformance7
2 TOE DESCRIPTION8
2.1 Product type8
2.2 TOE structure
2.3 General TOE functionality
2.4 Qualified Electronic Signatures12
3 TOE SECURITY ENVIRONMENT
3.1 Assumptions13
3.2 Threats14
3.3 Organization Security Policies14
3.4 Subjects, Objects 15 3.4.1 Subjects 15 3.4.2 Objects 15
4 SECURITY OBJECTIVES16
4.1 Security Objectives for the TOE16

4.2	Security Objectives for the Environment	17
5	IT SECURITY REQUIREMENTS	19
5.1	TOE Security Functional Requirements	19
5.1	·	
5.1		
5.2	TOE Security Assurance Requirements	21
5.2	· · ·	
5.2		
5.2		
5.2	I v v	
5.2		
5.2		
5.2		
5.3	Security Requirements for the Environment	24
5.3		
5.3	1	
0.0		
6	TOE SUMMARY SPECIFICATION	27
6.1	TOE Security Functions	27
6.1	.1 TSF.Hash (SOF-high)	27
6.1	.2 TSF.Cipher	27
6.1	.3 TSF.Signature	28
6.1	.4 TSF.Random (SOF-high)	28
6.1	.5 TSF.MAC (SOF-high)	29
6.2	Assurance Measures	29
7	PP CLAIMS	33
8	RATIONALE	34
8.1	Security Objectives Rationale	34
8.2	Security Requirements Rationale	38
8.2	· •	
8.2	.2 Security Assurance Requirements Rationale	39
8.3	TOE Summary Specification Rationale	
8.3	.1 TOE Security Functions Rationale	39
8.4	Dependency Rationale	
	F.Hash	
	F.Cipher	
	F.Signature	
TSI	F.Random	44

	SF.MAC CS_CKM.1 Cryptographic key generation	
8.5	Security Functional Requirements Grounding in Objectives	46
9	APPENDIX A – REFERENCES	48
10	APPENDIX C – ACRONYMS	52
11	APPENDIX E - DEFINITION OF THE FAMILY FCS_RND	53
11.1	FCS_RND generation of random numbers	53

List of Tables

TABLE 1 ASSUMPTIONS14	•
TABLE 2 THREATS14	1
TABLE 3 SUBJECTS15	5
TABLE 4 OBJECTS	5
TABLE 5 SECURITY OBJECTIVES FOR THE TOE16	5
TABLE 6 SECURITY OBJECTIVES FOR THE ENVIRONMENT18	3
TABLE 7 ASSURANCE REQUIREMENTS (EAL3 +)	2
TABLE 8 MAPPING THE TOE SECURITY ENVIRONMENT TO SECURITY	
OBJECTIVES	5
TABLE 9 TRACING OF SECURITY OBJECTIVES TO THE TOE SECURITY	
ENVIRONMENT	7
TABLE 10 FUNCTIONAL SECURITY REQUIREMENTS RATIONALE FOR THE	Ξ
TOE	3
TABLE 11 FUNCTIONAL SECURITY REQUIREMENTS RATIONALE FOR THE	Ξ
ENVIRONMENT	9
TABLE 12 ASSURANCE SECURITY REQUIREMENTS RATIONALE40)
TABLE 13 FUNCTIONAL AND ASSURANCE REQUIREMENTS	
DEPENDENCIES42	2
TABLE 14 REQUIREMENTS TO OBJECTIVES MAPPING	7

List of Figures

FIGURE 1: THE TOE AND	ITS ENVIRONMENT	8

1 ST Introduction

1.1 ST Identification

Title:	IAIK-JCE CC Core Security Target	
Version:	1.2	
Date:	05 May 2004	
Authors:	SIC	
	Stiftung secure information and communication	
	technologies. ¹	
	IAIK	
	Institute for applied information processing and	
	communications – Graz university of technology.	
TOE:	IAIK-JCE CC Core	
TOE version:	3.1	
Assurance level:	EAL 3+	
	The TOE meets the assurance requirements of assurance	
	level EAL 3 augmented by AVA_VLA.4, ADV_IMP.1,	
	ADO_DEL.2, ADV_LLD.1, ALC_TAT.1 and	
	AVA_MSU.2.	
Strength of functions:	The TOE s strength of functions is rated high (SOF high).	
Evaluation Body:	TÜV Informationstechnik GmbH	
	Langemarckstraße 20	
	45141 Essen, Germany	
TOE documentation:	¥	
	Core 3.1: Readme.html, File Revision 25 and linked	
	documents	
	IAIK – Guidance Document, Integrity Verification	
	Guidance Version 1.1, 2004-04-22	

1.2 ST Overview

The IAIK-JCE CC Core is a set of APIs and implementations of cryptographic functionality.

Including:

- hash functions
- signature schemes
- block ciphers
- stream ciphers
- asymmetric ciphers
- message authentication codes
- random number generators

¹ The IAIK has established the "Stiftung Secure Information and Communication Technologies" (SIC). Stiftung SIC is a non-profit organisation which was established as a foundation for public utility, aiming at encouraging independent scientific research, development as well as teaching and knowledge transfer in the fields of applied information processing, communication and information security. On December 15, 2003 all rights regarding our crypto toolkits were transferred from IAIK to Stiftung SIC.

It supplements the security functionality of the default Java Runtime Environment. The IAIK-JCE CC Core is delivered to the customer as part of the IAIK-JCE toolkit, which extends the CC Core by additional algorithms, features and protocols.

1.3 CC Conformance

The ST is CC part 2 [CC2] extended (by FCS_RND.1) and CC Part 3 [CC3] conformant. The Evaluation Assurance Level is EAL3 augmented by AVA_VLA.4, ADV_IMP.1, ADO_DEL.2, ADV_LLD.1, ALC_TAT.1, AVA_MSU.2. This ST does not claim conformance with any Protection Profile.

2 TOE Description

2.1 Product type

The **TOE** is pure Java software delivered to users as part of a toolkit. This toolkit consists of a Java library in form of JAR file, documentation and demo code. The **TOE** provides components usable to develop applications including functionality to create and verify digital signatures as well as encrypting and decrypting data. The **TOE** is conformant to the Java Cryptographic Architecture (JCA) and Java Cryptographic Extensions (JCE) and implements a Cryptographic Service Provider as defined there. Applications access the cryptographic functionality of this provider through the JCA and JCE framework.

2.2 TOE structure

This section explains the structure of the TOE, its relationship and boundary to other components. Figure 1 shows a Java Virtual Machine VM running an application that uses the TOEs cryptographic algorithms through the JCA/JCE framework.

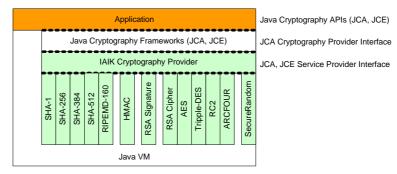


Figure 1: The TOE and its environment

The **TOE** implements a Java Cryptographic Service Provider (used interchangeably with "provider" in this document) as defined in the JCA and JCE specification by SUN Microsystems. This provider implementation is called IAIK provider. The IAIK provider can be registered in the JCA framework. Thereafter, applications can access the cryptographic algorithms of the IAIK provider. For each cryptographic primitive the JCA and JCE provide a separate service provider interface (SPI), which is an abstract class. Each concrete implementation of a cryptographic algorithm must implement the SPI and thus derive the abstract class. For instance, the class of the **TOE** which contains the actual SHA-1 implementation extends the abstract class MessageDigestSPI. The **TOE** implements hash algorithms (also called message digest in the JCA context), signature algorithms (includes signature generation and verification) and ciphers (includes block ciphers as well as stream ciphers and asymmetric ciphers).

The application can request an implementation of a certain algorithm from the JCA framework using static methods in framework classes. For example, to get an implementation of the SHA-1 hash algorithm of the IAIK provider, the application calls MessageDigest.getInstance("SHA-1", "IAIK"). The names of the algorithms, like "SHA-1", are defined in the developers manual. The name of the provider is fixed to IAIK for the IAIK provider. The result is a MessageDigest

object, which contains the SHA-1 implementation of the IAIK provider. The class MessageDigest of the JCA framework provides a common interface to all hash algorithms. For signature and cipher implementations the workflow is similar. For a more detailed description of the JCA/JCE framework please refer to [CRYPTO SPEC].

The TOE (IAIK-JCE CC Core) is delivered to the customer as part of the IAIK-JCE toolkit. This toolkit add more algorithms, features and protocols to the TOE functionality.

2.3 General TOE functionality

The **TOE** provides cryptographic hash, message authentication code (MAC), digital signature and encryption related functionality, as well as deterministic random number generators DRNG.

2.3.1 Hash related functionality

The **TOE** provides implementations of algorithms used to calculate hash functions. There are several uses cases, when it is necessary to calculate a cryptographic hash function only. For instance, when using dedicated cryptographic hardware, like smart cards, to create digital signatures. Some of these hardware modules are not capable of computing the hash itself and therefore need the TOE to perform this task. Furthermore the computation of a hash function will be used whenever the creation of the signature is a multistep process, where hashes of data to be signed are incorporated into a new structure (like CMS or XML-Dsig).

The **TOE** implements the following hash algorithms:

- SHA-1 [FIPS PUB 180-1]
- Ripemd-160 [ISO/IEC 10118-3]
- SHA-256 [FIPS PUB 180-2]
- SHA-384 [FIPS PUB 180-2]
- SHA-512 [FIPS PUB 180-2]

2.3.2 MAC related functionality

To compute a message authentication code the TOE uses the HMAC algorithm as defined in [RFC 2104]. This HMAC uses the following cryptographic hash functions:

- SHA-1 [FIPS PUB 180-1]
- Ripemd-160 [ISO/IEC 10118-3]
- SHA-256 [FIPS PUB 180-2]
- SHA-384 [FIPS PUB 180-2]
- SHA-512 [FIPS PUB 180-2]

as described in the previous chapter. The application must provide the secret key of size (128 + k * 8) bit \leq blocksize of the used hash function, with [k=0,1,2,...]. Smaller key sizes are supported as well, but they are not suitable for use in an environment which requires a high strength of functions.

2.3.3 Digital Signature related functionality

The **TOE** provides implementations of algorithms used to generate and verify digital signatures. Specifically, the **TOE** provides implementations of hash functions, asymmetric encryption algorithms and padding schemes and implements specific signature schemes. The included hash functions are the same as those listed in the previous section about hash functionality.

The **TOE** implements signature generation and verification according to the following digital signature schemes:

- RSA with SHA-1, SHA-256, SHA-384, SHA-512 or RIPEMD-160 according to [PKCS#1v1.5], with key lengths of 1024 + k * 64 [k=0,1,2,...] bit. The maximum key size is 8192 bit .
- RSA-PSS with SHA-1, SHA-256, SHA-384, SHA-512 or RIPEMD-160 according to [PKCS#1v2.1], with key lengths of 1024 + k * 64 [k=0,1,2,...] bit. The maximum key size is 8192 bit.

The **TOE** is designed to meet the requirements of an application for the generation and the verification of qualified electronic signatures as defined in the legislation of the European Union [EU_directive], [SigG] and [SigV]. However, for the generation of a qualified electronic signature, it may be required to use an external secure signature creation device (SSCD) for the private key operation. The **TOE** can calculate the hash value in this case but the incorporation of the SSCD is up to the application.

Most of the signature algorithms support smaller key sizes as well, but they are not suitable for use in an environment which requires a high strength of functions.

2.3.4 Encryption functionality

The **TOE** implements several algorithms that can be used for data encryption and decryption. Key management is out of scope of the **TOE**. The application provides the keys to the **TOE**. The **TOE** does not modify the keys it gets from the application. Moreover, it ensures that key material is protected and not revealed to any other application or other entities.

The **TOE** implements the following block ciphers:

- AES 128, 192, 256 bit [FIPS PUB 197]
- Triple-DES 112, 168 bit [FIPS 46-3]
- RC2 128-1024 bit [RFC 2268]

Each of these block cipher can be used with the following modes of operation:

- ECB
- CBC
- OFB
- CFB

In addition, AES supports the CTR mode.

The **TOE** implements the following stream ciphers:

• ARCFOUR 128 – 2048 bit according to [IETF-Draft-Kaukonen]. This algorithm is assumed to be compatible with RC4TM from RSA Security Inc..

The **TOE** implements the following asymmetric ciphers:

- RSA 1024 + k * 64 [k=0,1,2,...] bit according to [PKCS#1v1.5]. The maximum key size is 8192 bit.
- RSA-OAEP 1024 + k * 64 [k=0,1,2,...] bit according to [PKCS#1v2.1]. The maximum key size is 8192 bit.

Most of the encryption algorithms support smaller key sizes as well, but they are not suitable for use in an environment which requires a high strength of functions.

2.3.5 Random Number Generator related functionality

The TOE contains two random number generators based on one of the following hash functions: SHA-1 [FIPS PUB 180-1], SHA-256 [FIPS PUB 180-2], SHA-384 [FIPS

PUB 180-2], SHA-512 [FIPS PUB 180-2] or RIPEMD-160 [ISO/IEC 10118-3]. The random number generator must be initialized with a random seed with adequate entropy.

2.3.6 TOE Boundary

In principle, the **TOE** has two boundaries. The first is the interaction with the Java VM and its Java Runtime Environment JRE and JCE classes. The **TOE** assumes that these operate compliant with the Java Language Specification 2.0 and the Java Virtual Machine Specification, Second Edition.

The second boundary is between the **TOE** and the application. It is worth to note that this is not a direct boundary. The application only accesses classes of the JCA and JCE framework directly, and these classes forward requests to the **TOE**. The JCA and JCE classes are part of the environment and the **TOE** assumes that they operate according to the JCA Specification of Java 1.1 [JCA1.1-REF] (or later) and the JCE Specification 1.2 [JCE1.2-REF] (or later). The **TOE** does not have any direct interfaces to any component other than the application, the JCA and JCE classes or the JRE classes (like e.g. the operating system or other applications). The **TOE** does also not initiate any I/O operations like file access or network connections.

The **TOE** is able to support the generation of digital signatures. Two use cases can be identified:

- Advanced and Qualified Electronic Signatures.
 - The **TOE** is used together with a secure signature creation device to create qualified electronic signatures or advanced electronic signatures. In this case, the **TOE** is used only to calculate the hash of the data to be signed (and only if the SSCD is unable to do so by itself). The **TOE** calculates the hash and returns it to the application. The application can pass this hash value to the SSCD to process the private key operation. It may access such cryptographic hardware e.g. via the PKCS#11 API. Prompting a PIN or pass phrase for access to the private key, will usually be done with a smart card reader or HSM which has its own key pad for entering this authentication data. Displaying data to be signed or verified is out of scope of the **TOE**.
- Conventional Signatures.

The **TOE** is used without hardware support to create electronic signatures. In this case all calculations required to create the signature are done within the **TOE**. In specific, the Java VM (with its JRE classes) executes the code of the **TOE** which implements all required cryptographic algorithms.

Furthermore the **TOE** has functionality which is not part of the evaluation. For example:

- The **TOE** supports more key sizes than the minimum and maximum key size which are described in chapter 2.3.3 and 2.3.4 for RSA-Signatures and RSA-Encryption. The maximum key size depends on the system resources only.
- The **TOE** also supports PCBC as mode of operation for all symmetric block ciphers.

In addition, the IAIK-JCE toolkit which contains the **TOE** offers more functionality which is not part of the TOE. For instance:

- Additional ciphers like DES, IDEA, or Blowfish
- More hash algorithms like MD2, MD5 or RipeMd128

- X.509 Certificate parsing and creation
- CRL parsing and creation
- OCSP protocol classes

2.3.7 TOE Environment

The application, the JRE classes, the JCA and JCE framework and the Java VM constitute the environment of the **TOE**. The **TOE** is written in Java only and runs in the same instance of the Java VM as the environment. All components communicate by Java method calls executed by the Java VM. No other communication techniques are used at the interfaces. In particular the TOE does not perform any I/O operation, like file or network access. The TOE requires the Java VM in use to operate as defined in one of the following specifications:

- JVM Specification 1.0.2 [JVMSpec1] with the Java Platform 1.1 API [JavaAPI1.1] and JCE 1.2.x ([JCE1.2-REF], [JCE1.2.1-REF], [JCE1.2.2-REF] or [JCE1.4-REF])
- JVM Specification 1.2 [JVMSpec2] with one of the following APIs:
 - o J2SE 1.4.x [JavaAPI1.4]
 - J2SE 1.3.x [JavaAPI1.3] and JCE 1.2.x ([JCE1.2-REF], [JCE1.2.1-REF], [JCE1.2.2-REF] or [JCE1.4-REF])
 - J2SE 1.2.x [JavaAPI1.2] and JCE 1.2.x ([JCE1.2-REF], [JCE1.2.1-REF], [JCE1.2.2-REF] or [JCE1.4-REF])

Only the administrator can install and modify the environment and the TOE.

2.4 Qualified Electronic Signatures

The **TOE** is aimed to be compliant with the requirement specified for products for qualified electronic signatures in the German Digital Signature Act [SigG] § 17 and the Digital Signature Ordinance [SigV] § 15.

If the application attempts to generate a qualified electronic signature, it may use the **TOE** to calculate the hash value over the signed data. After receiving the hash value from the **TOE**, the application forwards this hash value to a SSCD. The **TOE** does not communicate with the SSCD. This is the job of the application.

The **TOE** specifically supports several algorithms which are relevant with respect to qualified signatures [SigG-Alg]. The relevant hash functions are:

- SHA-1 hash function
- SHA-256
- SHA-384
- SHA-512
- RIPEMD-160 hash function

The relevant signature algorithms for qualified signatures are:

- RSA according to PKCS#1 v1.5
- RSA-PSS according to PKCS#1 v2.1

3 TOE Security Environment

The statement of **TOE** security environment describes the security aspects of the environment in which the **TOE** is intended to be used and the manner in which it is expected to be employed.

To this end, the statement of **TOE** security environment identifies and lists the assumptions made on the operational environment (including physical and procedural measures), states the intended method of use of the product, defines the threats that the product is designed to counter.

Assumption	Definition	Security Objectives	
A.Protection	Protection.	OE.EnvironmentIntegrity,	
		OE.EnvironmentProtection	
	The TOE and its environment are		
	protected in such a way that it is		
	impossible for S.Attacker to read		
	or modify any data.		
A.Train	Administrators (S.Admin) are	OE.TOEIntegrity	
	assumed to be suitably qualified		
	to set up the system and to verify		
	the TOE integrity.		
A.Manual	S.Developer uses the TOE in the	OE.ExecutionEnvironment,	
	right way as described in the	OE.TOE_Usage	
	manual. In order to reach SOF		
	high, the S.Developer must use		
	the key sizes recommend in the		
	manual.		
A.SeedManagement	SeedGeneration.	OE.SuitableSeed,	
		OE.SeedProtection	
	The IT-Environment must		
	provide a suitable seed for the		
	RandomNumberGenerator.		
	Furthermore it must ensure that		
	the seed is kept secret.		
A.KeyManagement	Key Management.	OE.KeyProtection,	
		OE.CorrectKeys	
	The IT-Environment is		
	responsible for key management.		
	Key management is out of scope		
	of the TOE . O.PrivateKey and		
	O.SecretKey, needed for		
	computation of O.CipherText,		
	O.MAC and O.Signature, must		
	be provided by S.Application.		
	The TOE does not generate or		
	destruct keys. Given key material		
	won't be modified or stored by		
	the TOE .		

3.1 Assumptions

A.Java_Spec	Java Specification.	OE.ExecutionEnvironment
	The Java VM in use works according the JVM Specification V 1.0.2 [JVMSpec1] with the API of Java 1.1 [JavaAPI1.1] or JVM 1.2 [JVMSpec2] with the following APIs: J2SE 1.4.x [JavaAPI.14] J2SE 1.3.x [JavaAPI1.3] J2SE 1.2.x [JavaAPI1.2]	
A.JCE_Spec	JCE Specification. JCE Specification. JCE framework, which is needed if Java API in use is older than version 1.4 [JavaAPI.14] (1.1.x [JavaAPI1.1], 1.2.x [JavaAPI1.2], 1.3.x [JavaAPI1.3]), works according to the JCE 1.2 [JCE1.2-REF], JCE 1.2.1 [JCE1.2.1-REF], JCE 1.2.2 [JCE1.2.2-REF] specification.	OE.ExecutionEnvironment

Table 1 Assumptions

3.2 Threats

Threat	Definition	Security Objectives
T.SignatureForgery	S.Attacker could forge	OT.SignatureSecure,
	O.Signature or recover	OE.EnvironmentProtection
	O.PrivateKey from	
	O.Signature.	
T.DeduceData	S.Attacker could deduce	OT.CipherSecure,
	O.Data from O.CipherText.	OE.EnvironmentProtection
T.DeduceKey	S.Attacker could deduce	OT.CipherSecure,
	O.SecretKey from	OE.EnvironmentProtection
	O.CipherText.	
T.DeduceRandomSeed	S.Attacker could deduce	OT.RandomSecure,
	O.RandomSeed.	OE.EnvironmentProtection
T.PredictRandomNumber	S.Attacker could predict the	OT.RandomSecure
	next generated	
	O.RandomNumber.	
T.MACForgery	S.Attacker could forge	OT.MACSecure,
	O.MAC or recover	OE.EnvironmentProtection
	O.SecretKey.	
T.HashForgery	S.Attacker could find	OT.HashSecure
	collisions to O.Hash	

Table 2 Threats

3.3 Organization Security Policies

There are no organisational security policies with which the **TOE** must comply.

3.4 Subjects, Objects

3.4.1 Subjects

Subject	Definition	
S.Admin	User who is in charge to perform the TOE installation	
	and TOE configuration.	
S.Developer	User who is in charge to use the TOE for developing	
	his Application (S.Application).	
S.Application	The surrounding application which is using the TOE .	
S.JavaVM	Java Virtual Machine.	
S.Attacker	A human or a process outside the TOE whose main	
	goal is to access Application sensitive information.	
	Since the current evaluation level EAL3+, the attacker	
	has a high level potential attack and no time limit.	

Table 3 Subjects

3.4.2 Objects

Object	Definition	
O.Data	Private data obtained from the S.Application (e.g. Data	
	to be signed).	
O.MAC	MAC generated by the TOE.	
O.Hash	Hash generated by the TOE .	
O.Signature	Signature generated by the TOE .	
O.CipherText	The cipher text generated by the TOE .	
O.PrivateKey	Private Key Data which the TOE uses to generate	
	O.Signature (e.g. RSA Private key).	
O.SecretKey	Secret Key Data which the TOE uses to encrypt	
	O.Data and/or decrypt O.CipherText (e.g. AES key).	
O.RandomSeed	The seed (initial state) used by the DRNG	
O.RandomNumber	The random number generated by the TOE	

Table 4 Objects

4 Security Objectives

4.1 Security Objectives for the TOE

Security Objective	Definition	Threats
OT.SignatureSecure	Signature Secure.	T.SignatureForgery
	The TOE shall generate and	
	validate O.Signature. The TOE	
	uses robust algorithms to ensure	
	that the signature cannot be forged	
	or O.PrivateKey cannot be	
	reconstructed from O.Signature.	
OT.CipherSecure	Data Privacy.	T.DeduceData,
		T.DeduceKey
	The TOE shall generate secure	
	O.CipherText from O.Data by	
	encryption with O.SecretKey or	
	O.Data from O.CipherText by	
	decryption with O.SecretKey. The	
	use of robust algorithms and	
	appropriate key sizes ensures that	
	O.SecretKey, O.Data or	
	O.CipherText cannot be deduced.	
OT.RandomSecure	The TOE shall generate	T.DeduceRandomSeed
	unpredictable O.RandomNumber.	T.PredictRandomNumber
	O.RandomSeed cannot be deduced.	
OT.MACSecure	MAC Secure.	T.MACForgery
	The TOE shall generate and	
	validate O.MAC. It uses robust	
	MAC algorithms, that cannot be	
	forged. Furthermore O.SecretKey	
	cannot be extracted from O.MAC.	
OT.HashSecure	Secure hash algorithms.	T.HashForgery
	The TOE shall generate secure	
	O.Hash.	

Table 5 Security Objectives for the TOE

4.2 Security Objectives for the Environment

Security Objective	Definition	Assumptions / Threats
OE.TOEIntegrity	S.Admin or S.Developer	A.Train
	must be sufficiently	
	trained to set up the	
	system and shall verify	
	the integrity of the TOE	
	by comparing the SHA-1	
	fingerprint of the	
	delivered ZIP file with	
	the fingerprint obtained	
	by an independent secure	
	delivery from the	
	manufacturer. (see	
	ADO_DEL.2 in chap.	
	6.2)	
OE.EnvironmentIntegrity	Access Protected.	A.Protection
	The Environment shall	
	ensure that only	
	S.Application has access	
	to the TOE .	
OE.KeyProtection	Key Protection.	A.KeyManagement
	The Environment must	
	protect the keys from	
	unauthorized access.	
OE.CorrectKeys	Correct Keys.	A.KeyManagement
	The Environment must	
	provide well formed and	
	valid keys to the TOE .	
OE.SuitableSeed	Suitable Seed. The	A.SeedManagement
	Environment must	
	provide a suitable seed	
	to the TOE.	
OE.SeedProtection	Seed Protection.	A.SeedManagement
	The Environment must	
	protect the seed from	
	unauthorized access.	
OE.ExecutionEnvironment	Execution Environment.	A.Java_Spec, A.JCE_Spec, A.Manual
	The Environment must	
	provide an execution	
	environment that meets	
	the requirements (see	
	chap. 2.3.7).	

OE.EnvironmentProtection	Side Channel.	A.Protection,
		T.SignatureForgery,
	The Environment must	T.DeduceData, T.DeduceKey,
	protect the TOE against	T.DeduceRandomSeed,
	side channel attacks.	T.MACForgery
OE.TOE_Usage	TOE Usage.	A.Manual
	The S.Application uses	
	the TOE according to	
	the manual.	

Table 6 Security Objectives for the Environment

5 IT Security Requirements

5.1 TOE Security Functional Requirements

This chapter defines the functional requirements for the **TOE** using functional components drawn from [CC2] and the extended component FCS_RND.1/HashRandom.

The minimum strength level for the **TOE** security functional requirements FCS_COP.1/SHA-1, FCS_COP.1/SHA-265, FCS_COP.1/SHA-384, FCS_COP.1/SHA-512, FCS_COP.1/RIPEMD-160, FCS_RND.1/HashRandom, FCS_RND.1/FipsRandom and FCS_COP.1/HMAC is **SOF-high**. According to [CC1] the strength of cryptographic algorithms is outside the scope of the CC evaluation.

5.1.1 Cryptographic support (FCS)

Cryptographic operation FCS_COP.1/SHA-1

The TSF shall perform *Secure hash computation* in accordance with a specified cryptographic algorithm *SHA-1* and cryptographic key sizes *none* that meet the following: *FIPS PUB 180-1*.

Cryptographic operation FCS_COP.1/SHA-256

The TSF shall perform *Secure hash computation* in accordance with a specified cryptographic algorithm *SHA-256* and cryptographic key sizes *none* that meet the following: *FIPS PUB 180-2*.

Cryptographic operation FCS_COP.1/SHA-384

The TSF shall perform *Secure hash computation* in accordance with a specified cryptographic algorithm *SHA-384* and cryptographic key sizes *none* that meet the following: *FIPS PUB 180-2*.

Cryptographic operation FCS_COP.1/SHA-512

The TSF shall perform *Secure hash computation* in accordance with a specified cryptographic algorithm *SHA-512* and cryptographic key sizes *none* that meet the following: *FIPS PUB 180-2*.

Cryptographic operation FCS_COP.1/RIPEMD-160

The TSF shall perform *Secure hash computation* in accordance with a specified cryptographic algorithm *RIPEMD-160* and cryptographic key sizes *none* that meet the following: *ISO/IEC 10118-3:1998*.

Cryptographic operation FCS_COP.1/AES

The TSF shall perform *Data encryption and decryption* in accordance with a specified cryptographic algorithm *AES ECB/CBC/OFB/CFB/CTR Mode* and cryptographic key sizes *128 bit*, *192 bit*, *256 bit* that meet the following: *FIPS PUB-197*.

Cryptographic operation FCS_COP.1/TripleDES

The TSF shall perform *Data encryption and decryption* in accordance with a specified cryptographic algorithm *Triple-DES ECB/CBC/OFB/CFB Mode* and cryptographic key sizes *112 bit*, *168 bit* that meet the following: *FIPS PUB 46-3*.

Cryptographic operation FCS_COP.1/RC2

The TSF shall perform *Data encryption and decryption* in accordance with a specified cryptographic algorithm *RC2 ECB/CBC/OFB/CFB Mode* and cryptographic key sizes *128 - 1024 bit* that meet the following: **RFC 2268**.

Cryptographic operation FCS_COP.1/ARCFOUR

The TSF shall perform *Data encryption and decryption* in accordance with a specified cryptographic algorithm *ARCFOUR* and cryptographic key sizes *128 - 2048 bit* that meet the following: **[IETF-Draft-Kaukonen]**.

Cryptographic operation FCS_COP.1/RSACipher

The TSF shall perform *Data encryption and decryption* in accordance with a specified cryptographic algorithm *RSA* and cryptographic key sizes (1024 + k * 64) *bit - 8192 bit max.*, [k=0,1,2,...] that meet the following: *PKCS#1 v1.5*.

Cryptographic operation FCS_COP.1/RSACipherOAEP

The TSF shall perform *Data encryption and decryption* in accordance with a specified cryptographic algorithm *RSA* and cryptographic key sizes (1024 + k * 64) *bit* – 8192 *bit max.*, [k=0,1,2,...] that meet the following: *PKCS#1 v2.1 OAEP*.

Cryptographic operation FCS_COP.1/RSASignature

The TSF shall perform *Digital signature generation and verification* in accordance with a specified cryptographic algorithm *RSA* signature and cryptographic key sizes (1024 + k * 64) bit – 8192 bit max., [k=0,1,2,...] that meet the following: *PKCS#1* v1.5 in combination with FCS_COP.1/SHA-1, FCS_COP.1/SHA-256, FCS_COP.1/SHA-384, FCS_COP.1/SHA-512 and FCS_COP.1/RIPEMD-160.

Cryptographic operation FCS_COP.1/RSASignaturePSS

The TSF shall perform *Digital signature generation and verification* in accordance with a specified cryptographic algorithm *RSA* signature and cryptographic key sizes (1024 + k * 64) bit – 8192 bit max., [k=0,1,2,...] that meet the following: *PKCS#1 v2.1 PSS in combination with FCS_COP.1/SHA-1, FCS_COP.1/SHA-256, FCS_COP.1/SHA-384, FCS_COP.1/SHA-512 and FCS_COP.1/RIPEMD-160*.

Cryptographic operation FCS_RND.1/HashRandom

The TSF shall provide a mechanism to generate random numbers that meet *the functionality class K3 according to AIS20*.

The TSFs shall be able to enforce the use of TSF-generated random numbers for *TSF.Random*.

Note: The implementation must be according to example E.5 of AIS20. Possible hash functions for generating random numbers are: SHA-1 [FIPS PUB 180-1], RIPEMD-

160 [ISO/IEC 10118-3], SHA-256 [FIPS PUB 180-2], SHA-384 [FIPS PUB 180-2], and SHA-512 [FIPS PUB 180-2].

Cryptographic operation FCS_RND.1/FipsRandom

The TSF shall provide a mechanism to generate random numbers that meet *the functionality class K4 according to AIS20*.

The TSFs shall be able to enforce the use of TSF-generated random numbers for *TSF.Random*.

Note: The implementation must be according to FIPS PUB 186-2. Possible hash functions for generating random numbers are: SHA-1 [FIPS PUB 180-1], RIPEMD-160 [ISO/IEC 10118-3], SHA-256 [FIPS PUB 180-2], SHA-384 [FIPS PUB 180-2], and SHA-512 [FIPS PUB 180-2].

Cryptographic operation FCS_COP.1/HMAC

The TSF shall perform *MAC generation and verification* in accordance with a specified cryptographic algorithm *HMAC with SHA-1*, *SHA-256*, *SHA-384*, *SHA-512*, *RipeMD-160* and cryptographic key sizes (128+k*8)bit <= block size of the used hash function [k=0,1,2,...] that meet the following: *RFC 2104*.

5.1.2 User Data Protection (FDP)

Import of user data without security attributes FDP_ITC.1

• **FDP_ITC.1.1**

The TSF shall enforce the *JVM-Policy* when importing user data, controlled under the SFP, from outside of the TSC.

• FDP_ITC.1.2

The TSF shall ignore any security attributes associated with the user data when imported from outside the TSC.

• FDP_ITC.1.3

The TSF shall enforce the following rules when importing user data controlled under the SFP from outside the TSC: *none*.

Note: *JVM-Policy*: The private keys and user data, used for computation, are given as arguments to the **TOE.** The **TOE** does not provide access to any copies of key material, not even the application has access to these copies. Since the environment, especially the **S.JavaVM**, protects access to the memory where these copies reside, there are no means for attackers to get access to these copies. Moreover, the **S.JavaVM** guarantees that memory areas are zeroed out before they are reclaimed and assigned for reuse. With this zero-out any key copies are destructed. The **TOE** does not modify the original key objects nor does it destruct them, it only accesses them in a read-only fashion.

5.2 TOE Security Assurance Requirements

Assurance Class	Assurance Components
ACM	ACM_CAP.3 ACM_SCP.1
ADO	ADO_DEL.2 ADO_IGS.1

ADV	ADV_FSP.1 ADV_HLD.2 ADV_RCR.1
	ADV_IMP.1 ADV_LLD.1
AGD	AGD_ADM.1 AGD_USR.1
ALC	ALC_DVS.1 ALC_TAT.1
ATE	ATE_COV.2 ATE_DPT.1 ATE_FUN.1
	ATE_IND.2
AVA	AVA_MSU.2 AVA_SOF.1 AVA_VLA.4

Table 7 Assurance Requirements (EAL3 +)

5.2.1 Configuration management (ACM)

Authorisation controls (ACM_CAP.3)

TOE CM coverage (ACM_SCP.1)

5.2.2 Delivery and operation (ADO)

Detection of modification ADO_DEL.2

Installation, generation, and start-up procedures (ADO_IGS.1)

5.2.3 Development (ADV)

Informal functional specification (ADV_FSP.1)

Subset of the implementation of the TSF (ADV_IMP.1)

Security enforcing high-level design (ADV_HLD.2)

Descriptive low-level design (ADV_LLD.1)

Informal correspondence demonstration (ADV_RCR.1)

5.2.4 Guidance documents (AGD)

Administrator guidance (AGD_ADM.1)

User guidance (AGD_USR.1)

5.2.5 Life cycle support (ALC)

Well-defined development tools (ALC_TAT.1)

Identification of security measures (ALC_DVS.1)

5.2.6 Tests (ATE)

Analysis of coverage (ATE_COV.2)

Testing: high-level design (ATE_DPT.1)

Functional testing (ATE_FUN.1)

Independent testing – sample (ATE_IND.2)

5.2.7 Vulnerability assessment (AVA)

Validation of analysis (AVA_MSU.2)

Strength of TOE security function evaluation (AVA_SOF.1)

Highly resistant (AVA_VLA.4)

5.3 Security Requirements for the Environment

5.3.1 General Requirements for the Environment

R.EnvironmentIntegrity

The Environment shall ensure that only S.Application has access to the **TOE**.

R.KeyProtection

The Environment must protect the keys from unauthorized access.

R.CorrectKeys

The Environment must provide well formed and valid keys to the **TOE**.

R.SuitableSeed:

The TSF has to provide a random seed offering suitable entropy and the length of the seed should be at least half the size of the hash value; e.g. s0 should have at least 80 bits if the pseudo random is based on the SHA-1 hash, which produces 160 bit hash values.

R.SeedProtection

The Environment must protect the seed from unauthorized access.

R.ExecutionEnvironment

The Environment must provide an execution environment that meets the requirements (see chap. 2.3.7).

R.EnvironmentProtection

The Environment must protect the **TOE** against side channel attacks.

R.TOE_Usage

The S.Application uses the **TOE** according to the S.Manual.

R.TOEIntegrity

S.Admin or S.Developer must be sufficiently trained to set up the system and shall verify the integrity of the TOE by comparing the SHA-1 fingerprint of the delivered ZIP file with the fingerprint obtained by an independent secure delivery from the manufacturer.

5.3.2 Security Requirements for the IT Environment

Note: The IT Environment is the S.JavaVM and/or the S.Application.

Subset residual information protection (FDP_RIP.1)

FDP_RIP.1.1

The TSF shall ensure that any previous information content of a resource is made unavailable upon the de-allocation of the resource from the following objects: *seed*.

Cryptographic key generation (FCS_CKM.1)

FCS_CKM.1/AES

The TSF shall generate cryptographic keys in accordance with a specified cryptographic key generation algorithm *FIPS PUB 197* and specified cryptographic key sizes *128, 192, 256 bit* that meet the following: *FIPS PUB 197*.

FCS_CKM.1/TripleDES

The TSF shall generate cryptographic keys in accordance with a specified cryptographic key generation algorithm *FIPS 46-3* and specified cryptographic key sizes *112, 168 bit* that meet the following: *FIPS 47-3*.

FCS_CKM.1/RC2

The TSF shall generate cryptographic keys in accordance with a specified cryptographic key generation algorithm *RFC 2268* and specified cryptographic key sizes *128-1024 bit* that meet the following: *RFC 2268*.

FCS_CKM.1/ARCFOUR

The TSF shall generate cryptographic keys in accordance with a specified cryptographic key generation algorithm *IETF-Draft-Kaukonen* and specified cryptographic key sizes *128-2048 bit* that meet the following: *IETF-Draft-Kaukonen*.

FCS_CKM.1/RSACipher

The TSF shall generate cryptographic keys in accordance with a specified cryptographic key generation algorithm *PKCS#1v1.5* and specified cryptographic key sizes (1024 + k * 64) – 8192 bit, [k=0,1,2,...] that meet the following: *PKCS#1v1.5*.

FCS_CKM.1/RSACipherOAEP

The TSF shall generate cryptographic keys in accordance with a specified cryptographic key generation algorithm *PKCS#1v2.1* and specified cryptographic key sizes (1024 + k * 64) – 8192 bit, [k=0,1,2,...] that meet the following: *PKCS#1v2.1*.

FCS_CKM.1/RSASignature

The TSF shall generate cryptographic keys in accordance with a specified cryptographic key generation algorithm *PKCS#1v1.5* and specified cryptographic key sizes (1024 + k * 64) – 8192 bit, [k=0,1,2,...] that meet the following: *PKCS#1v1.5*.

FCS_CKM.1/RSASignaturePSS

The TSF shall generate cryptographic keys in accordance with a specified cryptographic key generation algorithm *PKCS#1v2.1* and specified cryptographic key sizes (1024 + k * 64) - 8192 bit, [k=0,1,2,...] that meet the following: *PKCS#1v2.1*.

FCS_CKM.1/HMAC

The TSF shall generate cryptographic keys in accordance with a specified cryptographic key generation algorithm *not applicable* and specified cryptographic key sizes of *at least 128 bit* that meet the following: *RFC2104*.

Note: As described in RFC 2104 any byte array can be used as key. Thus there is no need to specify a key generation algorithm. The key length should be at least 128 bit to prevent a brute-force key search.

Cryptographic key destruction (FCS_CKM.4)

FCS_CKM.4/AES

The TSF shall destroy cryptographic keys in accordance with a specified cryptographic key destruction method *zeroing out memory areas* that meets the following: *JVMSpec1*, *JVMSpec2*.

FCS_CKM.4/TripleDES Analogous to FCS CKM.4/AES.

FCS_CKM.4/RC2 Analogous to FCS_CKM.4/AES.

FCS_CKM.4/ARCFOUR Analogous to FCS_CKM.4/AES.

FCS_CKM.4/RSACipher Analogous to FCS_CKM.4/AES.

FCS_CKM.4/RSACipherOAEP Analogous to FCS_CKM.4/AES.

FCS_CKM.4/RSASignature Analogous to FCS_CKM.4/AES.

FCS_CKM.4/RSASignaturePSS Analogous to FCS_CKM.4/AES.

FCS_CKM.4/HMAC Analogous to FCS_CKM.4/AES.

6 TOE Summary Specification

6.1 TOE Security Functions

6.1.1 TSF.Hash (SOF-high)

The TOE is capable of computing a cryptographic hash function (also called message digest in this context). A message digest algorithm represents the functionality of an one-way hash function for computing a fixed sized data value (message digest, hash) from input data of arbitrary size. The length of the resulting hash value usually is shorter than the length of the input data. Using a one-way hash function will make it easy to compute the hash from the given data, but hard to go the reverse way for calculating the input data when only the hash is known. Furthermore, a proper hash function should avoid any collision, meaning that it has to be hard to find two different messages producing the same hash value. The following hash algorithms are implemented:

FCS_COP.1/SHA-1 (SOF-high):

A pure Java implementation of the *SHA-1* hash algorithm according to *FIPS PUB* 180-1.

FCS_COP.1/SHA-256 (SOF-high):

A pure Java implementation of the *SHA-256* hash algorithm according to *FIPS PUB* 180-2.

FCS_COP.1/SHA-384 (SOF-high):

A pure Java implementation of the *SHA-384* hash algorithm according to *FIPS PUB 180-2*.

FCS_COP.1/SHA-512 (SOF-high):

A pure Java implementation of the *SHA-512* hash algorithm according to *FIPS PUB* 180-2.

FCS_COP.1/RIPEMD-160 (SOF-high):

A pure Java implementation of the *RIPEMD-160* hash algorithm according to *ISO/IEC 10118-3:1998*.

6.1.2 TSF.Cipher

The TOE offers functionality to decrypt and encrypt data. These functions can be subdivided into symmetric and asymmetric functions.

6.1.2.1 Symmetric Functions:

The TOE provides symmetric block ciphers for data encryption and decryption. Symmetric ciphers use a shared secret for decryption and encryption. Additionally these ciphers can be used in various modes of operations like ECB, CBC, OFB and CFB. The following symmetric algorithms are implemented:

FCS_COP.1/AES:

A pure Java implementation of *AES data encryption and decryption* in *ECB/CBC/OFB/CFB/CTR Mode* with *128, 192, 256* bit key size according to *FIPS PUB-197*.

FCS_COP.1/TripleDES:

A pure Java implementation of *Triple-DES data encryption and decryption* in *ECB/CBC/OFB/CFB Mode* with *112, 168* bit key size according to *FIPS PUB 46-3*.

FCS_COP.1/RC2:

A pure Java implementation of *RC2 data encryption and decryption* in *ECB/CBC/OFB/CFB Mode* with *128-1024* bit key size according to *RFC2268*.

FCS_COP.1/ARCFOUR:

A pure Java implementation of *ARCFOUR data encryption and decryption* with *128-2048* bit key size according to **[IETF-Draft-Kaukonen]**.

6.1.2.2 Asymmetric Functions:

In contrast to the symmetric ciphers, asymmetric techniques use two different keys to encrypt and decrypt the data. The TOE implements the following asymmetric encryption schemes:

FCS_COP.1/RSACipher:

A pure Java implementation of *RSA data encryption and decryption* with (1024 + k * 64) - 8192 bit max., [k=0,1,2,...] bit key size according to *PKCS#1 v1.5*.

FCS_COP.1/RSACipherOAEP:

A pure Java implementation of *RSA data encryption and decryption* with (1024 + k * 64) - 8192 bit max.,[k=0,1,2,...] bit key size according to *PKCS#1 v2.1 OAEP*.

6.1.3 TSF.Signature

The TOE can be used to generate and validate digital signatures according to the following schemes:

FCS_COP.1/RSASignature:

A pure Java implementation of *RSA signature generation and verification* with (1024 + k * 64) - 8192 bit max., [k=0,1,2,...] bit key size according to *PKCS#1 v1.5* in combination with FCS_COP.1/SHA-1, FCS_COP.1/SHA-256, FCS_COP.1/SHA-384, FCS_COP.1/SHA-512 and FCS_COP.1/RIPEMD-160.

FCS_COP.1/RSASignaturePSS:

A pure Java implementation of *RSA signature generation and verification* with (1024 + k * 64) – 8192 bit max., [k=0,1,2,...] bit key size according to *PKCS#1 v2.1 PSS in combination with FCS_COP.1/SHA-1, FCS_COP.1/SHA-256, FCS_COP.1/SHA-384, FCS_COP.1/SHA-512 and FCS_COP.1/RIPEMD-160.*

6.1.4 TSF.Random (SOF-high)

The TOE offers deterministic random number generators (DRNG). The application has to provide a random seed, offering suitable entropy.

FCS_RND.1/HashRandom (SOF-high):

A pure Java implementation of a class K3 *secure random number generator* as defined in AIS20. **The implementation is according to** *example E.5 of AIS20*. Possible hash functions for generating random numbers are: SHA-1 [FIPS PUB 180-1], RIPEMD-160 [ISO/IEC 10118-3], SHA-256 [FIPS PUB 180-2], SHA-384 [FIPS PUB 180-2] und SHA-512 [FIPS PUB 180-2].

FCS_RND.1/FipsRandom (SOF-high):

A pure Java implementation of a class K4 *secure random number generator* as defined in AIS20. **The implementation is according to** *FIPS PUB 186-2*. Possible hash functions for generating random numbers are: SHA-1 [FIPS PUB 180-1], RIPEMD-160 [ISO/IEC 10118-3], SHA-256 [FIPS PUB 180-2], SHA-384 [FIPS PUB 180-2] und SHA-512 [FIPS PUB 180-2].

6.1.5 TSF.MAC (SOF-high)

Message Authentication Codes (MACs) are used to guarantee the integrity and authenticity of a message. The TOE uses a HMAC, which is based on a shared secret and a secure hash function, in compliance with the following standard: **FCS_COP.1/HMAC (SOF-high):**

A pure Java implementation of *HMAC generation and verification* using *SHA-1*, *SHA-256*, *SHA-384*, *SHA-512*, *RipeMD-160* as hash functions with key sizes of (128+k*8)bit <= block size of the used hash function [k=0,1,2,...] according to *RFC 2104*.

r	Assurance equirements	Measures
	ACM_CAP.3	IAIK maintains a central CM server located in a locked server room. The CM tool in use is <i>Microsoft Visual SourceSafe</i> .
Configuration management		Each version of each configuration item is archived and maintained in the central <i>Visual SourceSafe</i> database. Each item may be uniquely identified by its name (full path name) within the corresponding project folder and each version of that <i>item</i> by its <i>version number</i> , its creation or modification <i>date</i> and <i>time</i> , and, if available, its <i>label</i> (a <i>label</i> is not required on each version, however, the evaluated version of the IAIK-JCE CC Core is tagged with a unique identifier (as all other release versions, too)). <i>Version number, date</i> and <i>time</i> are assigned automatically; A <i>label</i> is set by the user.
		Authorisation controls to both, the central server and the user workstations, are managed by the security functions of the particular operating system. Access to the <i>SourceSafe</i> database is password protected to authorized developers only.

6.2 Assurance Measures

	ACM_SCP.1	The CM system tracks the TOE implementation representation as well as documentation and test material. The implementation is archived as encapsulated release versions containing the entire Java source code.
uo	ADO_DEL.2	IAIK delivers the library and all documentation in terms of a single ZIP archive on a CD. Furthermore the CD contains a SHA-1 fingerprint of this ZIP file and of all relevant parts contained within the ZIP. Thereby it is possible to check the integrity of some unzipped parts after the installation. A tool to validate these hash values will be included as well.
Delivery and operation		All these hash values will be published on IAIKs web server (https access) and additionally will be sent to the customers with a signed e-mail, with fax or handed over personally.
Delivery	ADO_IGS.2	The TOE itself, which is a jar archive containing the compiled Java code, is signed, as required by the JCE specification [JCE1.4-REF].
		There is no installation of the TOE in the conventional meaning. The administrator simply has to unzip the TOE and put it on the "right place". The "right place" depends on the application using the TOE.
	ADV_FSP.1	IAIK provides a functional specification of the TOE. The usage of the security functions of the TOE is primarily prescribed by the JCA/JCE architecture which defines most of the interfaces. There exist different versions of this architecture. The various original specifications of this architecture are added to the delivered documents. All other interfaces that are not compliant to the JCA/JCE architecture are described additionally.
Development	ADV_HLD.2	The HLD (High Level Design) description introduces the subsystems of the TOE. According to the JCA/JCE provider definition each subsystem is defined as a collection of Java packages. There are only two subsystems, IAIK and UTILITIES. Subsystem IAIK implements all TOE security functions (see chapter 6.1 of this document). Subsystem UTILITIES provides a set of utilities that are used by subsystem IAIK. The HLD also presents all external (to the environment) and internal interfaces (among the subsystems) of the two subsystems. The presentation is based on the Javadoc output of the corresponding classes. With respect to the functional specification, the HLD introduces the JCA/JCE SPI as
		main interface between final application (end user, API) and TOE subsystems, and discusses where the TOE extends the/differs from the JCA/JCE reference API/SPI.

		The RCR (Representation Correspondence) shows the
	ADV_RCR.1	correspondence between the TSS security functions (as presented in chapter 6.1 of this document), the FSP
		(functional specification), HLD (high level design), LLD
		(low level design) and IMP (implementation). It stepwise
		refines the design by leading from the JCA/JCE API (FSP)
		to the JCE/JCA SPI (HLD) to TOE subsystems (HLD),
		modules (LLD) and final classes (IMP) which are
		presented at Java Source Code level.
	ADV_IMP.1	The IMP (Implementation Representation) describes the structure of the TOE source code. In addition it provides
		information about how to compile the source code.
		The LLD (Low Level Design) discusses the modules of
	ADV_LLD.1	the TOE subsystems and presents all external (to the
		environment and other subsystems) and internal interfaces
		(among the modules of a subsystem) module interfaces.
		The presentation is based on the Javadoc output of the
		corresponding classes. The LLD also shows how the several modules depend on each other.
		There is no separate administrator manual. All required
ce nts	AGD_ADM.1	information on how to install the TOE are within the user
lano	_	manual.
Guidance documents		IAIK provides a user manual, which contains all necessary
G	AGD_USR.1	information about the TOE installation and usage (required
		by the application programmers).
÷	ALC_DVS.1	The protection of the development environment is guaranteed by physical, procedural and personal measures.
por	ALC_DV5.1	guaranceed by physical, procedural and personal measures.
e cycle support		The IAIK-JCE CC Core library is written in the Java
cle	ALC_TAT.1	programming language in a code fully compatible to
cyc		version 1.1. Java is a well defined programming language.
ife		Critical constructs, such as threads or constructs from the
Ι		Reflection API, are not used within the IAIK-JCE CC Core library.
		The tests are explained in a test specification document. It
	ATE_COV.2	describes the source of test data and how the tests are
		organized.
		Moreover, there is a test suite for the complete TOE which
	ATE_DPT.1	include tests of all interfaces.
ts		This test suite runs automatically and applies test vectors
Tests	ATE_FUN.1	for each TSF. The test vectors consist of input data and
L .		expected output data. Standard vectors were taken where
		available. The tests have been monitored with a tool that
		measures the code coverage of the test suite.
		The evolutions will have eccess to the test suits to weith it.
	ATE_IND.2	The evaluators will have access to the test suite to verify it.

ity nt	AVA_MSU.2	The AVA (Vulnerability Assessment) analyses the TOE for vulnerabilities. It starts with an investigation of the guidance documentation to ensure if it is complete and
ulnerability ssessment	AVA_SOF.1	consistent. Then, there follows a consideration of the strength of the used security functions. The document closes with an systematic analysis of the TOE for
Vu at	AVA_VLA.4	vulnerabilities. The attacker is assumed to have a high attack potential an practically unlimited time.

7 PP Claims

This chapter is not applicable to this ST (see chapter 1.3).

8 Rationale

8.1 Security Objectives Rationale

This chapter shall demonstrate that the stated security objectives are traceable to all of the aspects identified in the TOE security environment and are suitable to cover them.

Policy /Threat/ Assumption:	Objectives:	Comment:
	Security Objectives for the TOE	
T.DeduceData	OT.CipherSecure	This objective ensures that data cannot be deduced from O.Cipher. By the use of appropriate cipher algorithms, which are generally known as secure, it is not possible to deduce data from the cipher text.
T.DeduceKey	OT.CipherSecure	This objective ensures that keys cannot be deduced from O.Cipher. By the use of appropriate cipher algorithms, which are generally known as secure, it is not possible to deduce the key from the cipher text.
T.DeduceRandomSeed	OT.RandomSecure	This objective ensures that the random seed cannot be deduced. By the use of an appropriate random number generation algorithm, which is generally known as secure, it is not possible to deduce the random seed.

T.PredictRandomNumber	OT.RandomSecure	This objective ensures
	01.Kandomsecure	that the next generated
		random number cannot
		be predicted.
		By the use of an
		appropriate random
		number generation
		algorithm, which is
		generally known as
		secure, it is not possible
		to predict the random number.
THATE	OT Healt Canada	
T.HashForgery	OT.HashSecure	This objective ensures
		that the S.Attacker
		cannot find collisions.
		By the use of an
		appropriate hash
		algorithm, which is
		generally known as
		secure, it is not possible
		to find collisions.
T.MACForgery	OT.MACSecure	This objective ensures
		that the S.Attacker
		cannot forge O.MAC or
		recover O.SecretKey
		from O.MAC.
		By the use of an
		appropriate mac
		algorithm, which is
		generally known as
		secure, it is not possible
		to forge the mac or to
		recover the key.
T.SignatureForgery	OT.SignatureSecure	This objective ensures
		that O.Signature cannot
		be forged and
		O.PrivateKey cannot be
		recovered from
		O.Signature.
		By the use of an
		appropriate signature
		algorithm, which is
		generally known as
		secure, it is not possible
		to forge the signature or
		to recover the key.
	arity Objectives for the Environment	
A.Protection	OE.EnvironmentIntegrity,	These objectives ensure
	OE.EnvironmentProtection	that S.Attacker cannot
		read or modify any data.

A Joyo Space	OE.ExecutionEnvironment	This objective ensures
A.Java_Spec	OE.ExecutionEnvironment	This objective ensures
		that the Java version in
		use meets the required
		specification.
A.JCE_Spec	OE.ExecutionEnvironment	This objective ensures
		that the JCE version in
		use meets the required
		specification.
A.KeyManagement	OE.KeyProtection,	These objectives ensure
	OE.CorrectKeys	an appropriate key
		management.
A.Manual	OE.ExecutionEnvironment,	These objectives ensure
	OE.TOE_Usage	that the TOE is used
		and behaves according
		to the manual.
A.Train	OE.TOEIntegrity	This objective ensures
		that the integrity of the
		TOE can be verified at
		any time.
		This can be attained by
		a suitably qualified
		S.Admin.
A.SeedManagement	OE.SuitableSeed,	These objectives ensure
	OE.SeedProtection	an appropriate seed
		management.
T.DeduceData	OE.EnvironmentProtection	This objective ensures
		that data cannot be read
		or modified by
		S.Attacker before the
		TOE receives the data.
T.DeduceKey	OE.EnvironmentProtection	This objective ensures
		that the environment
		protects the key.
T.DeduceRandomSeed	OE.EnvironmentProtection	This objective ensures
		that the environment
		protects the seed.
T.MACForgery	OE.EnvironmentProtection	This objective ensures
1.141/1CI OIGOLY		that the data cannot be
		read or modified by
		S.Attacker before the
		TOE receives the data.
T Signature Forger	OE.EnvironmentProtection	
T.SignatureForgery	OE.EnvironmentProtection	This objective ensures
		that the data cannot be
		read or modified by
		S.Attacker before the
		TOE receives the data.

Table 8 Mapping the TOE Security Environment to Security Objectives

Objective:	Policies/ Threats/	Comment:
	Assumptions:	

S	ecurity Objectives for the T	OE
OT.CipherSecure	T.DeduceData,	These threats are countered
	T.DeduceKey	by the use of ciphers which
		are known as secure.
OT.HashSecure	T.HashForgery	This threat is countered by
	1.Hushi orgory	the use of hash algorithms
		which are known as secure.
OT.MACSecure	T.MACForgery	This threat is countered by
01.WIACSecure	1. WINCE OF get y	the use of secure mac
		algorithms.
OT.SignatureSecure	T.SignatureForgery	This threat is countered by
OT.SignatureSecure	1.Signaturer orgery	•
		the use of secure signature
OT Devidence Concerns	T. Due d'a (Dans dans Normalian	algorithms.
OT.RandomSecure	T.PredictRandomNumber,	This threat is countered by
	T.DeduceRandomSeed	the use of secure random
		number generation
		algorithms.
	rity Objectives for the Envir	
OE.TOEIntegrity	A.Train	This assumption assures the
		integrity of the TOE .
OE.EnvironmentIntegrity	A.Protection	This assumption assures the
		integrity of the environment.
OE.CorrectKeys	A.KeyManagement	This assumption assures that
		the environment provides
		correct keys to the TOE .
OE.SuiteableSeed	A.SeedManagement	This assumption assures that
		the environment provides
		suitable seeds to the TOE .
OE.ExecutionEnvironment	A.Java_Spec,	These assumptions assure
	A.JCE_Spec, A.Manual	that the provided execution
		environment meets the
		required specification.
OE.KeyProtection	A.KeyManagement	This assumption assures the
		protection of the key
		material.
OE.SeedProtection	A.SeedManagement	This assumption assures the
	Ŭ	protection of the seed.
OE.EnvironmentProtection	A.Protection,	This assumption assures that
	T.DeduceData,	the environment is protected
	T.DeduceKey,	and helps to avert these
	T.DeduceRandomSeed,	threats.
	T.SignatureForgery,	
	T.MACForgery	
OE.TOE_Usage	A.Manual	This assumption assures that
	1 1.11111111111	the TOE is used in an
		appropriate way.
		appropriate way.

Table 9 Tracing of Security Objectives to the TOE Security Environment

8.2 Security Requirements Rationale

The **TOE** security objectives concern the provision of "secure" cryptographic functionality as further specified in the security functional requirements. They contain no specific strength-related properties. Therefore, strength of function claim SOF-high is consistent with the security objectives for the **TOE**.

8.2.1 Functional Security Requirements Rationale

8.2.1.1 Functional Security Requirements Rationale for the TOE

Objectives:	Requirements:	Comments:
OT.CipherSecure	FCS_COP.1/AES, FCS_COP.1/TripleDES, FCS_COP.1/RSACipher, FCS_COP.1/RSACipherOAEP FCS_COP.1/RC2, FCS_COP.1/ARCFOUR, FDP_ITC.1	The use of the left-mentioned cryptographic operations ensures that the generated O.CipherText is secure. FDP_ITC.1 is needed to import cryptographic keys for the operation.
OT.HashSecure	FCS_COP.1/SHA-1, FCS_COP.1/SHA-256, FCS_COP.1/SHA-384, FCS_COP.1/SHA-512, FCS_COP.1/RIPEMD-160	The use of the left-mentioned hash functions ensures that the generated O.Hash is secure.
OT.MACSecure	FCS_COP.1/HMAC, FDP_ITC.1	The use of this cryptographic function ensures that the generated O.MAC is secure. FDP_ITC.1 is needed to import cryptographic keys for the operation.
OT.SignatureSecure	FCS_COP.1/RSASignature, FCS_COP.1/RSASignaturePSS, FDP_ITC.1	The use of the left-mentioned cryptographic operations ensures that the generated O.Signature is secure. FDP_ITC.1 is needed to import cryptographic keys for the operation.
OT.RandomSecure	FCS_RND.1/HashRandom FCS_RND.1/FipsRandom	The use of the left-mentioned functions ensures that the generated O.RandomNumber is secure.

 Table 10 Functional Security Requirements Rationale for the TOE

8.2.1.2 Functional Security Requirements Rationale for the environment

Objectives:	Requirements:	Comments:
OE.TOEIntegrity	R.TOEIntegrity	If the left-mentioned
		requirement is met, the
		TOE integrity is ensured.
OE.ExecutionEnvironment	R.ExecutionEnvironment	If the left-mentioned

OE.CorrectKeys	R.CorrectKeys, FCS_CKM.1	requirement is met, the execution environment fulfils the required conditions as described in chapter 2.3.7. If the left-mentioned requirements are met, the
		use of correct keys is ensured.
OE.SuitableSeed	R.SuitableSeed	If the left-mentioned requirement is met, the use of applicable seeds is ensured.
OE.SeedProtection	R.SeedProtection, FDP_RIP.1	If the left-mentioned requirement is met, the seed protection is ensured.
OE.EnvironmentIntegrity	R.EnvironmentIntegrity	If the left-mentioned requirement is met, the environment integrity is ensured.
OE.TOE_Usage	R.TOE_Usage	If the left-mentioned requirement is met, the right TOE usage is ensured.
OE.KeyProtection	R.KeyProtection, FCS_CKM.4.1	If the left-mentioned requirements are met, the protection of the key is ensured.
OE.EnvironmentProtection	R.EnvironmentProtection	If the left-mentioned requirement is met, the environment protection is ensured.

 Table 11 Functional Security Requirements Rationale for the environment

8.2.2 Security Assurance Requirements Rationale

To meet the requirements of an application for the generation and the verification of qualified electronic signatures as defined in the legislation of the European Union [EU_directive], [SigG] and [SigV] the selected evaluation level is EAL3 augmented by AVA_VLA.4, ADV_IMP.1, ADO_DEL.2, ADV_LLD.1, ALC_TAT.1 and AVA_MSU.2 and the selected strength of functions is high (SOF-high).

8.3 TOE Summary Specification Rationale

8.3.1 TOE Security Functions Rationale

The security functions of the **TOE** reach SOF-high.

The **TOE** should be able to resist attacks from attackers with sophisticated knowledge. Given that the **TOE** is generally available the attacker is assumed to have unlimited time to set up his attacks. The attacker is assumed to use equipment which

is state of the art. The data which is processed by the **TOE** is assumed to be of high importance.

To counter these threats the **TOE** uses cryptographic functions.

Security Functions:	Mechanism:	Min Key- Size:	Security Functional Requirements:	SOF:
TSF.Hash	SHA-1		FCS_COP.1/SHA-1	high
	SHA-256		FCS_COP.1/SHA-256	high
	SHA-384		FCS_COP.1/SHA-384	high
	SHA-512		FCS_COP.1/SHA-512	high
	RIPEMD-160		FCS_COP.1/RIPEMD-160	high
TSF.Cipher	AES	128 bit	FCS_COP.1/AES	
	TripleDES	112 bit	FCS_COP.1/TripleDES	
	RC2	128 bit	FCS_COP.1/RC2	
	ARCFOUR	128 bit	FCS_COP.1/ARCFOUR	
	RSA PKCS#1 v1.5	1024 bit	FCS_COP.1/RSACipher	
	RSA PKCS#1 v2.1	1024 bit	FCS_COP.1/RSACipherOAEP	
	OAEP			
			FDP_ITC.1	
TSF.Signature	RSA PKCS#1 v1.5 with SHA-1, SHA- 256, SHA-384, SHA-512, RIPEMD-160	1024 bit	FCS_COP.1/RSASignature	
	RSA PKCS#1 v2.1 PSS with SHA-1, SHA-256, SHA- 384, SHA-512, RIPEMD-160	1024 bit	FCS_COP.1/RSASignaturePSS	
TSF.Random			FDP_ITC.1	hial
ISF.Kandom			FCS_RND.1/HashRandom	high bigh
TSF.MAC	HMAC with SHA-	128 bit	FCS_RND.1/FipsRandom	high
I SF.WAC	HMAC with SHA- 1, SHA-256, SHA 384, SHA 512, RipeMD-160	120 DIL	FCS_COP.1/HMAC FDP_ITC.1	high

 Table 12 Assurance Security Requirements Rationale

There is a one to one correspondence between the TSF and the SFR with the exception of FDP_ITC.1. This requirement is needed to import keys for cryptographic operations and is implicitly fulfilled by the corresponding TSF (Cipher, Signature, MAC). That means that the TSF are suitable to meet the security functional requirements and work together without any conflict.

8.4 Dependency Rationale

, ,		
Requirement:	Dependencies:	
© Institute for applied inf	formation processing and communications	
	05.05.2004	40/53

Function	nal Requirements
FCS_COP.1/SHA-1	[FDP_ITC.1 or FCS.CKM.1],
_	FMT_MSA.2, FCS_CKM.4
FCS COP.1/SHA-256	[FDP_ITC.1 or FCS.CKM.1],
_	FMT_MSA.2, FCS_CKM.4
FCS_COP.1/SHA-384	[FDP_ITC.1 or FCS.CKM.1],
	FMT_MSA.2, FCS_CKM.4
FCS_COP.1/SHA-512	[FDP_ITC.1 or FCS.CKM.1],
	FMT_MSA.2, FCS_CKM.4
FCS COP.1/RIPEMD-160	[FDP_ITC.1 or FCS.CKM.1],
	FMT_MSA.2, FCS_CKM.4
FCS_COP.1/AES	[FDP_ITC.1 or FCS.CKM.1],
	FMT_MSA.2, FCS_CKM.4
FCS_COP.1/TripleDES	[FDP_ITC.1 or FCS.CKM.1],
	FMT_MSA.2, FCS_CKM.4
FCS_COP.1/RC2	[FDP_ITC.1 or FCS.CKM.1],
	FMT_MSA.2, FCS_CKM.4
FCS_COP.1/ARCFOUR	[FDP_ITC.1 or FCS.CKM.1],
	FMT_MSA.2, FCS_CKM.4
FCS_COP.1/RSACipher	[FDP_ITC.1 or FCS.CKM.1],
	FMT_MSA.2, FCS_CKM.4
FCS_COP.1/RSACipherOAEP	[FDP_ITC.1 or FCS.CKM.1],
	FMT_MSA.2, FCS_CKM.4
FCS_COP.1/RSASignature	[FDP_ITC.1 or FCS.CKM.1],
	FMT_MSA.2, FCS_CKM.4
FCS_COP.1/RSASignaturePSS	[FDP_ITC.1 or FCS.CKM.1],
	FMT_MSA.2, FCS_CKM.4
FCS_CKM.4/AES	[FDP_ITC.1 or FCS.CKM.1],
	FMT_MSA.2
FCS_CKM.4/TripleDES	[FDP_ITC.1 or FCS.CKM.1],
1 00_01100 / 11.p102 20	FMT MSA.2
FCS CKM.4/RC2	[FDP_ITC.1 or FCS.CKM.1],
	FMT MSA.2
FCS CKM.4/ARCFOUR	[FDP_ITC.1 or FCS.CKM.1],
	FMT MSA.2
FCS_CKM.4/RSACipher	[FDP_ITC.1 or FCS.CKM.1],
	FMT_MSA.2
FCS_CKM.4/RSACipherOAEP	[FDP_ITC.1 or FCS.CKM.1],
	FMT_MSA.2
FCS_CKM.4/RSASignature	[FDP_ITC.1 or FCS.CKM.1],
	FMT MSA.2
FCS_CKM.4/RSASignaturePSS	[FDP_ITC.1 or FCS.CKM.1],
	FMT MSA.2
FCS_CKM.4/HMAC	[FDP_ITC.1 or FCS.CKM.1],
	FMT_MSA.2
FCS_CKM.1/AES	[FCS_CKM.2 or FCS_COP.1],
	FCS_CKM.4, FMT_MSA.2
FCS_CKM.1/TripleDES	[FCS_CKM.2 or FCS_COP.1],
	FCS_CKM.4, FMT_MSA.2
l	$[\Gamma \cup S_ \cup K VI.4, \Gamma VI 1_ VI S A.2]$

FCS CKM.1/RC2	[FCS_CKM.2 or FCS_COP.1],
	FCS_CKM.4, FMT_MSA.2
FCS_CKM.1/ARCFOUR	[FCS_CKM.2 or FCS_COP.1],
	FCS_CKM.4, FMT_MSA.2
FCS_CKM.1/RSACipher	[FCS_CKM.2 or FCS_COP.1],
	FCS_CKM.4, FMT_MSA.2
FCS_CKM.1/RSACipherOAEP	[FCS_CKM.2 or FCS_COP.1],
_ 1	FCS_CKM.4, FMT_MSA.2
FCS_CKM.1/RSASignature	[FCS_CKM.2 or FCS_COP.1],
	FCS_CKM.4, FMT_MSA.2
FCS_CKM.1/RSASignaturePSS	[FCS_CKM.2 or FCS_COP.1],
	FCS_CKM.4, FMT_MSA.2
FCS_CKM.1/HMAC	[FCS_CKM.2 or FCS_COP.1],
	FCS_CKM.4, FMT_MSA.2
FDP_ITC.1	[FDP_ACC.1 or FDP_IFC.1],
	FMT_MSA.3
FCS_RND.1/HashRandom	FPT_TST.1
FCS_RND.1/FipsRandom	FPT_TST.1
FCS_COP.1/HMAC	[FDP_ITC.1 or FCS.CKM.1],
	FMT_MSA.2, FCS_CKM.4
Assurance	Requirements
ACM_CAP.3	ACM_SCP.1, ALC_DVS.1
ACM_SCP.1	ACM_CAP.3
ADO_IGS.1	AGD_ADM.1
ADV_FSP.1	ADV_RCR.1
ADV_HLD.2	ADV_FSP.1, ADV_RCR.1
AGD_ADM.1	ADV_FSP.1
AGD_ADM.1 AGD_USR.1	ADV_FSP.1 ADV_FSP.1
	-
AGD_USR.1	ADV_FSP.1
AGD_USR.1 ATE_COV.2	ADV_FSP.1 ADV_FSP.1, ATE_FUN.1 ADV_HLD.1, ATE_FUN.1 ADV_FSP.1, AGD_ADM.1,
AGD_USR.1 ATE_COV.2 ATE_DPT.1	ADV_FSP.1 ADV_FSP.1, ATE_FUN.1 ADV_HLD.1, ATE_FUN.1
AGD_USR.1 ATE_COV.2 ATE_DPT.1	ADV_FSP.1 ADV_FSP.1, ATE_FUN.1 ADV_HLD.1, ATE_FUN.1 ADV_FSP.1, AGD_ADM.1,
AGD_USR.1 ATE_COV.2 ATE_DPT.1 ATE_IND.2 AVA_MSU.2	ADV_FSP.1 ADV_FSP.1, ATE_FUN.1 ADV_HLD.1, ATE_FUN.1 ADV_FSP.1, AGD_ADM.1, AGD_USR.1, ATE_FUN.1
AGD_USR.1 ATE_COV.2 ATE_DPT.1 ATE_IND.2 AVA_MSU.2 AVA_SOF.1	ADV_FSP.1 ADV_FSP.1, ATE_FUN.1 ADV_HLD.1, ATE_FUN.1 ADV_FSP.1, AGD_ADM.1, AGD_USR.1, ATE_FUN.1 ADO_IGS.1, ADV_FSP.1, AGD_ADM.1, AGD_USR.1 ADV_FSP.1, ADV_HLD.1
AGD_USR.1 ATE_COV.2 ATE_DPT.1 ATE_IND.2 AVA_MSU.2	ADV_FSP.1 ADV_FSP.1, ATE_FUN.1 ADV_HLD.1, ATE_FUN.1 ADV_FSP.1, AGD_ADM.1, AGD_USR.1, ATE_FUN.1 ADO_IGS.1, ADV_FSP.1, AGD_ADM.1, AGD_USR.1

 Table 13 Functional and Assurance Requirements Dependencies

TSF.Hash

FCS_COP.1/SHA-1:

• **FDP_ITC.1/SHA-1 Import of user data without security attributes:** The computation of SHA-1 does not require the import of user data in terms of cryptographic keys.

• FCS_CKM.1/SHA-1 Cryptographic key generation:

There are no cryptographic keys required and thus there is no requirement for this security functional component.

• FCS_CKM.4/SHA-1 Cryptographic key destruction:

Since the computation of SHA-1 does not require any cryptographic keys this component can be omitted.

• FMT_MSA.2/SHA-1 Secure security attributes:

The hash computation does not require cryptographic keys and therefore no management of the security attributes. This security functional component is not needed.

FCS_COP.1/SHA-256:

Analogous to the points as described in FCS_COP.1/SHA-1.

FCS_COP.1/SHA-384:

Analogous to the points as described in FCS_COP.1/SHA-1.

FCS_COP.1/SHA-512:

Analogous to the points as described in FCS_COP.1/SHA-1.

FCS_COP.1/RIPEMD-160:

Analogous to the points as described in FCS_COP.1/SHA-1.

TSF.Cipher

FCS_COP.1/AES:

• FDP_ITC.1/AES Import of user data without security attributes:

See chapter 5.1.2 FDP_ITC.1.

• FCS_CKM.1/AES Cryptographic key generation:

The TOE does not generate keys itself. The environment is responsible for the key generation, so the requirement is included in chapter 5.3 "Security Requirements for the IT Environment".

• FCS_CKM.4/AES Cryptographic key destruction:

The TOE does not destroy keys itself. The environment is responsible for the key destruction, so the requirement is included in chapter 5.3 "Security Requirements for the IT Environment".

• FMT_MSA.2/AES Secure security attributes:

There are no security attributes related with the cryptographic keys (see FDP_ITC.1/AES).

FCS_COP.1/TripleDES:

Analogous to the points as described in FCS_COP.1/AES.

FCS_COP.1/RC2:

Analogous to the points as described in FCS_COP.1/AES.

FCS_COP.1/ARCFOUR:

Analogous to the points as described in FCS_COP.1/AES.

FCS_COP.1/RSACipher:

Analogous to the points as described in FCS_COP.1/AES.

FCS_COP.1/RSACipherOAEP:

Analogous to the points as described in FCS_COP.1/AES.

TSF.Signature

FCS_COP.1/RSASignature:

• FDP_ITC.1/RSASignature Import of user data without security attributes:

See chapter 5.1.2 FDP_ITC.1.

• FCS_CKM.1/RSASignature Cryptographic key generation:

The TOE does not generate keys itself. The environment is responsible for the key generation, so the requirement is included in chapter 5.3 "Security Requirements for the IT Environment".

• FCS_CKM.4/RSASignature Cryptographic key destruction:

The TOE does not destroy keys itself. The environment is responsible for the key destruction, so the requirement is included in chapter 5.3 "Security Requirements for the IT Environment".

• FMT_MSA.2/RSASignature Secure security attributes:

There are no security attributes related with the cryptographic keys (see FDP_ITC.1/RSASignature).

FCS_COP.1/RSASignaturePSS:

Analogous to the points as described in FCS_COP.1/RSASignature.

TSF.Random

FCS_RND.1/HashRandom:

• FPT_TST.1/HashRandom TSF testing

This dependency is intended for true random number generators (TRNG). Since the TOE implements a deterministic random number generator (DRNG) and the seed handling is done outside the TOE this functional requirement is not required.

FCS_RND.1/FipsRandom:

• FPT_TST.1/FipsRandom TSF testing

This dependency is intended for true random number generators (TRNG). Since the TOE implements a deterministic random number generator (DRNG) and the seed handling is done outside the TOE this functional requirement is not required.

TSF.MAC

FCS_COP.1/HMAC:

• FDP_ITC.1/HMAC Import of user data without security attributes:

See chapter 5.1.2 FDP_ITC.1.

• FCS_CKM.1/HMAC Cryptographic key generation:

The TOE does not generate keys itself. The environment is responsible for the key generation, so the requirement is included in chapter 5.3 "Security Requirements for the IT Environment".

• FCS_CKM.4/HMAC Cryptographic key destruction:

The TOE does not destroy keys itself. The environment is responsible for the key destruction, so the requirement is included in chapter 5.3 "Security Requirements for the IT Environment".

• FMT_MSA.2/HMAC Secure security attributes:

There are no security attributes related with the cryptographic keys (see FDP_ITC.1/HMAC).

FCS_CKM.1 Cryptographic key generation

FCS_CKM.1/AES:

• FCS_COP.1/AES

Is included in chapter 5.1.1 "Cryptographic support" as security requirement for the TOE.

• FCS_CKM.4/AES

Is included in chapter 5.3 "Security Requirements for the environment".

• FMT_MSA.2/AES

There are no security attributes related with the cryptographic keys and therefore this functional component is not needed.

FCS_CKM.1/TripleDES:

Analogous to the points as described in FCS_CKM.1/AES.

FCS_CKM.1/RC2:

Analogous to the points as described in FCS_CKM.1/AES.

FCS_CKM.1/ARCFOUR:

Analogous to the points as described in FCS_CKM.1/AES.

FCS_CKM.1/RSACipher:

Analogous to the points as described in FCS_CKM.1/AES.

FCS_CKM.1/RSACipherOAEP:

Analogous to the points as described in FCS_CKM.1/AES.

FCS_CKM.1/RSASignature:

Analogous to the points as described in FCS_CKM.1/AES.

FCS_CKM.1/RSASignaturePSS:

Analogous to the points as described in FCS_CKM.1/AES.

FCS_CKM.1/HMAC:

Analogous to the points as described in FCS_CKM.1/AES.

FDP_ITC.1

• FDP_ACC.1 Subset access control:

The **TOE** does not provide any access control itself. The access control is subject to the S.JavaVM. This functional component is therefore not required.

• FDP_IFC.1 Subset information flow control:

For our purposes no information control is needed and therefore this functional component is not required.

• FMT_MSA.3 Static attribute initialisation:

For our purposes no attributes are needed and therefore this functional component is not needed.

8.5 Security Functional Requirements Grounding in Objectives

Requirements:	Objectives:
FCS_COP.1/SHA-1	OT.HashSecure
FCS_COP.1/SHA-256	OT.HashSecure
FCS_COP.1/SHA-384	OT.HashSecure
FCS_COP.1/SHA-512	OT.HashSecure
FCS_COP.1/RIPEMD-160	OT.HashSecure
FCS_COP.1/AES	OT.CipherSecure
FCS_COP.1/TripleDES	OT.CipherSecure
FCS_COP.1/RC2	OT.CipherSecure
FCS_COP.1/ARCFOUR	OT.CipherSecure
FCS_COP.1/RSACipher	OT.CipherSecure
FCS_COP.1/RSACipherOAEP	OT.CipherSecure
FCS_COP.1/RSASignature	OT.SignatureSecure

FCS_COP.1/RSASignaturePSS	OT.SignatureSecure
FCS_COP.1/HMAC	OT.MACSecure
FCS_RND.1/FipsRandom	OT.RandomSecure
FCS_RND.1/HashRandom	OT.RandomSecure
FDP_RIP.1.1	OE.KeyProtection
FCS_CKM.4.1	OE.KeyProtection

Table 14 Requirements to Objectives Mapping

9 Appendix A – References

[AIS20]	Bundesamt für Sicherheit in der Informationstechnik (BSI), Application Notes and Interpretation of the Scheme (AIS), AIS 20, Version 1.0: Functionality classes and evaluation methodology for deterministic random number generators, Bundesamt für Sicherheit in der Informationstechnik (BSI),
	December 1999
[AIS31]	Bundesamt für Sicherheit in der Informationstechnik (BSI), Application Notes and Interpretation of the Scheme (AIS), AIS 31, Version 1.0: Functionality classes and evaluation methodology for physical random number generators, Bundesamt für Sicherheit in der Informationstechnik (BSI), September 2001
[CC]	ISO International Standard (IS) 15408:1999, Common Criteria for Information Technology Security Evaluation (Comprising Parts 1-3, [CC1], [CC2], [CC3]CC 2.1), Common Criteria Implementation Board (CCIB) and the International Standards Organization (ISO), JTC1/SC27/WG3 available online at http://www.commoncriteria.de, cited 15 January 2004
[CC1]	Common Criteria for Information Technology Security Evaluation Part 1: Introduction and General Model CCIMB-99- 031, Version 2.1, August 1999, Common Criteria Implementation Board (CCIB) available online at http://www.commoncriteria.de, cited 15 January 2004
[CC2]	Common Criteria for Information Technology Security Evaluation Part 2: Security Functional Requirements CCIMB- 99-032, Version 2.1, August 1999, Common Criteria Implementation Board (CCIB) available online at http://www.commoncriteria.de, cited 15 January 2004
[CC3]	Common Criteria for Information Technology Security Evaluation Part 3: Security Assurance Requirements CCIMB- 99-033, Version 2.1, August 1999, Common Criteria Implementation Board (CCIB) available online at http://www.commoncriteria.de, cited 15 January 2004
[CRYPTO SPEC]	Java Cryptography Architecture, API Specification & Reference, SUN Microsystems, Inc. http://java.sun.com/security/index.html, October 2003, cited 15 January 2004
[EU_directive]	Directive 1999/93/EC of the european parlament and of the council, 13 December 1999, on a Community framework for electronic signatures

[FIPS 46-3]	U.S. Department Of Commerce, Federal Information Processing
	Standards Publication: Data Encryption Standard (DES), FIPS
	PUB 46-3, U.S. Department Of Commerce, 199925 October
	251999, http://csrc.nist.gov/publications/fips/fips46-3/fips46-
	3.pdf, cited 15 January 2004
[FIPS PUB 180-1]	U.S. Department Of Commerce, Federal Information Processing
	Standards Publication: Secure Hash Standard, FIPS PUB 180-1,
	U.S. Department Of Commerce, 171995 April 1995 17,
	http://csrc.nist.gov/publications/fips/fips180-1/fip180-1.pdf, cited 15 January 2004
[FIPS PUB 180-2]	U.S. Department Of Commerce, Federal Information Processing
	Standards Publication: Secure Hash Standard, FIPS PUB 180-2,
	U.S. Department Of Commerce, 262001 November 2001 26,
	http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf,
	cited 15 January 2004
[FIPS PUB 197]	U.S. Department Of Commerce, Federal Information Processing
	Standards Publication: Advanced Encryption Standard, FIPS
	PUB 197, U.S. Department Of Commerce, 26 November 2001
	http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf, cited
	15 January 2004
[IETF-Draft-	K.Kaukonen, R.Thayer: A Stream Cipher Encryption Algorithm
Kaukonen]	"Arcfour", IETF draftInternet Draft: draft-kaukonen-cipher-
	arcfour-03.txt, 14 July 1999.
[ISO/IEC 10118-3]	ISO/IEC 10118-3:2003, Information technology Security
	techniques Hash-functions Part 3: Dedicated hash-functions,
	ISO/IEC, JTC 1/SC 27, 14 November 2003Dedicated hash-
	functions, Reference number: ISO/IEC FDIS 10118-3:2003(E),
	Final Draft: <u>http://www.ncits.org/ref-docs/FDIS_10118-3.pdf</u> ,
	cited 15 January 2004
[JavaAPI1.1]	Java Platform 1.1 Core API Specification, SUN Microsystems,
	Inc., Palo Alto, California, 1995-1999,
	http://java.sun.com/products/archive/jdk/1.1/index.html, cited 15
	January 2004
[JavaAPI1.2]	Java 2 Platform, Standard Edition, v1.2.2 API Specification,
	SUN Microsystems, Inc., 1999,
	http://java.sun.com/products/jdk/1.2/docs/api/index.html, cited
	15 January 2004
[JavaAPI1.3]	Java 2 Platform, Standard Edition, v 1.3.1 API Specification,
	SUN Microsystems, Inc., 2001,
	http://java.sun.com/j2se/1.3/docs/api/index.html, cited 15
	January 2004
[JavaAPI1.4]	Java 2 Platform, Standard Edition, v 1.4.2 API Specification,
	SUN Microsystems, Inc., 2003,
	http://java.sun.com/j2se/1.4.2/docs/api/, cited 15 January 2004
[JCA1.1-API]	Java TM Cryptography Architecture API, JavaDoc of package
	java.security, Java TM Platform API Specification, version 1.1,
	SUN Microsystems, Inc.
[JCA1.1-REF]	Java TM Cryptography Architecture API Specification &
	Reference, Java TM Specification, version 1.1, SUN
	Microsystems, Inc.

[JCA1.2-API]	Java TM Cryptography Architecture API, JavaDoc of package
	java.security, Java TM Platform API Specification, version 1.2,
	SUN Microsystems, Inc.
[JCA1.2-REF]	Java TM Cryptography Architecture API Specification &
[Reference, Java TM 2 SDK, Standard Edition, v 1.2, SUN
	Microsystems, Inc.
[JCA1.3-API]	Java TM Cryptography Architecture API, JavaDoc of package
[JCAI.J-AFI]	java Scryptography Architecture AFI, JavaDoc of package java.security, Java TM Platform API Specification, version 1.3,
	SUN Microsystems, Inc.
[JCA1.3-REF]	Java TM Cryptography Architecture API Specification &
	Reference, Java TM 2 SDK, Standard Edition, v 1.3, SUN
	Microsystems, Inc.
[JCA1.4-API]	Java TM Cryptography Architecture API, JavaDoc of package
	java.security, Java TM Platform API Specification, version 1.4,
	SUN Microsystems, Inc.,
	http://java.sun.com/j2se/1.4.2/docs/api/java/security/package-
	summary.html
[JCA1.4-PROV]	How to Implement a Provider for the Java TM Cryptography
	Architecture, Java TM Platform Specification, version 1.4, SUN
	Microsystems, Inc.,
	http://java.sun.com/j2se/1.4.2/docs/guide/security/HowToImplA
	Provider.html
[JCA1.4-REF]	Java TM Cryptography Architecture API Specification &
	Reference, Java TM Platform Specification, version 1.4, SUN
	Microsystems, Inc.,
	http://java.sun.com/j2se/1.4/docs/guide/security/CryptoSpec.htm
[JCE1.4-API]	Java TM Cryptography Extension API, JavaDoc of package
	java.security, Java TM Platform API Specification, version 1.4,
	SUN Microsystems, Inc.,
	http://java.sun.com/j2se/1.4.2/docs/api/javax/crypto/package-
	summary.html
[JCE1.4-PROV]	How to Implement a Provider for the Java TM Cryptography
	Extension, Java TM Platform Specification, version 1.4, SUN
	Microsystems, Inc.,
	http://java.sun.com/j2se/1.4.2/docs/guide/security/jce/HowToIm
	plAJCEProvider.html
[JCE1.4-REF]	Java TM Cryptography Extension (JCE) API Specification &
	Reference, Java TM 2 Standard Edition, version 1.4, SUN
	Microsystems, Inc.
	http://java.sun.com/j2se/1.4.2/docs/guide/security/jce/JCERefGu
	ide.html
[JCE1.2.2-REF]	Java TM Cryptography Extension (JCE) API Specification &
	Reference,
	version 1.2.2, SUN Microsystems, Inc.,
	http://java.sun.com/products/jce/
[JCE1.2.1-REF]	Java TM Cryptography Extension (JCE) API Specification &
	Reference,
	version 1.2.1, SUN Microsystems, Inc.,
	http://java.sun.com/products/jce/

[JCE1.2-REF]	Java TM Cryptography Extension (JCE) API Specification &
	Reference,
	version 1.2, SUN Microsystems, Inc.,
	http://java.sun.com/products/jce/
[JVMSpec1]	Tim Lindholm, Frank Yellin: Tim Lindholm, Frank Yellin: The
	Java Virtual Machine Specification, Addison-Wesley Pub Co,
	September 1996, ASIN: 020163452X
	http://java.sun.com/docs/books/vmspec/index.html
[JVMSpec2]	Tim Lindholm, Frank Yellin: Tim Lindholm, Frank Yellin: The
[, ,]	Java Virtual Machine Specification (2 nd Edition), Addison-
	Wesley Pub Co, 2 nd edition, April 1999, ISBN: 0201432943
	http://java.sun.com/docs/books/vmspec/index.html, cited 15
	January 2004
[PKCS#1v1.5]	PKCS#1 v1.5: RSA Encryption Standard
	RSA Laboratories; 1 November 1, 1993
	http://www.rsasecurity.com/rsalabs/pkcs/pkcs-1/, cited 15
	January 2004
[PKCS#1v2.1]	PKCS#1 v2.1: RSA Cryptography Standard
	RSA Laboratories; 14 June 14, 2002
	http://www.rsasecurity.com/rsalabs/pkcs/pkcs-1/, cited 15
	January 2004
[RFC 2104]	H. Krawczyk, M. Bellare, R. Canetti: HMAC: Keyed-Hashing
	for Message Authentication, Network Working Group, February
	1997, http://www.ietf.org/rfc/rfc2104.txt, cited 15 January 2004
[RFC 2268]	R. Rivest: A Description of the RC2(r) Encryption Algorithm,
	Network Working Group, March 1998,
	http://www.ietf.org/rfc/rfc2268.txt, cited 15 January 2004
[SigG]	Gesetz ueber Rahmenbedingungen fuer elektronische Signaturen
	und zur Aenderung weiterer Vorschriften, BGBl. I, S. 876, the
	German Bundestag, 16 Mai 2001 (German Digital Signature
	Act), 16. Mai 2001
	http://www.bmwa.bund.de/Navigation/Service/Gesetze/rechtsgr
	undlagen-informationsgesellschaft.html, cited 15 January 2004
[SigG-Alg]	Bekanntmachung zur elektronischen Signatur
	nach dem Signaturgesetz und der Signaturverordnung
	(Uebersicht ueber geeignete Algorithmen),
	Regulierungsbehoerde für Telekommunikation und Post, 13
	February 2004 in Bundesanzeiger Nr. 30, S. 2537-2538
[SigV]	Verordnung zur elektronischen Signatur, BGBl. I S. 3074, the
	German Government, 16 November 2001
	(Digital Signature Ordinance [(Signaturverordnung – SigV])),
	16. November 2001
	http://www.bmwa.bund.de/Navigation/Service/Gesetze/rechtsgr
	undlagen-informationsgesellschaft.html, cited 15 January 2004

A.XXX	Assumption
CC	Common Criteria for Information
	Technology Security Evaluation
	(referenced to as [CC])
CEM	Common Methodology for Information
	Technology Security Evaluation
CGA	Certificate Generation Application
CMS	Cryptographic Message Syntax
EAL	Evaluation Assurance Level
O.XXX	Objects (Assets)
OT.XXX	Security Objective for the TOE
OE.XXX	Security Objective for the Environment
PP	Protection Profile
SF	Security Function
SFR	Security Functional Requirement
SOF	Strength of Function
SSCD	Secure Signature Creation Device
ST	Security Target
T.XXX	Threat
TOE	Target of Evaluation
TSC	TSF Scope of Control
TSF	TOE Security Functions
TSP	TOE Security Policy
XML	Extensible Markup Language

10 Appendix C – Acronyms

11 Appendix E - Definition of the Family FCS_RND

Definition of a metric for Random Numbers is not provided in any of the classes of CC part 2. Therefore the component FCD_RND.1 of the German certification scheme document AIS 31 "A proposal for: Functionality classes and evaluation methodology for true (physical) random number generators" of BSI has been selected here.

11.1 FCS_RND generation of random numbers

Family behaviour

This family defines quality metrics for generating random numbers intended for cryptographic purposes.

Component levelling

FCS_RND.1 The generation of random numbers using TSFs requires the random numbers to meet the defined quality metrics.

Management: FCS_RND.1

No management functions are provided for.

Logging: FCS_RND.1

There are no events identified that should be auditable if FCS_RND generation of random numbers data generation is included in the PP/ST.

FCS_RND.1 Quality metrics for random numbers Is hierarchical to: no other components.

FCS_RND.1.1 The TSFs shall provide a mechanism for generating random numbers that meet [assignment: *a defined quality metric*].

FCS_RND.1.2 The TSFs shall be able to enforce the use of TSF-generated random numbers for [assignment: *list of TSF functions*].

Dependencies: FPT_TST.1 TSF testing.