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Abstract

This paper presents an elliptic curve cryptography processor for prime fields implemented
on a FPGA-PCI board. It serves as a coprocessor to acclerate cryptographic operations, like
signature generation and verification. It is intented to be used on systems with a high load of such
operations, like webservers for e-government applications. Performance estimates based on first
synthesis results suggest that more than 10000 point multiplications over a 192 bit prime field
per second can be performed on a high end FPGA, which can easily compete with the fastest
reported ASIC implementations. Targeted on low-end to mid-range FPGAs it is still the fastest
FPGA implementation reported for elliptic curve cryptography over prime fields.

1 Introduction

Internet applications with high security requirements gain more and more importance. For appli-
cations, like e-Government or online banking, security and the trust of the potential users in their
security is an important factor for their success. To achieve this high level of security encryption and
authentication is used. There are several algorithms which can be used, but all share the property
that they require large amounts of computing power. As many potential devices on the client side,
like smart cards or mobile phones, cannot supply this computing power easily many hardware im-
plementations of cryptographic algorithms where proposed and are in use. On the other hand server
systems do have enough computing power to handle the cryptographic algorithms, therefore much
less hardware acceleration solutions exist. However, while the client devices normally only have to
calculate a single cryptographic operation, for example to calculate the digital signature for a docu-
ment, the server systems have to handle many cryptographic operations in every second. For example,
an e-Government server may have to verify signatures of thousands of digitally submitted documents
every second. Therefore a high load is generated on the system and it clearly makes sense to use a
cryptographic hardware acceleration device, which can process the cryptographic algorithms much
more efficiently than a general purpose processor. Thus a smaller server can be used to handle the
same amount of users and so the total costs of the system could be lowered significantly.

For the widely usedRSAencryption system some server side solutions, like presented inWöckinger
[2005] exist. However, RSA has the disadvantage that it requires large keys, at least 1024 bit, to
achieve a basic level of security. This requires large and expensive hardware both at the client and
at the server side.Elliptic curve cryptography (ECC)is a very good alternative, as it allows much
smaller key sizes, and therefore much cheaper hardware, than RSA. According toHankerson et al.
[2004, chap. 1.3], a 160 bit ECC key offers the same level of security like a 1024 bit RSA key. As
for ECC unlike for RSA no sub-exponential time algorithms are known, for higher security levels the
advantage of ECC is even higher. Particularly interesting is the security level equivalent to the sym-
metric cryptography standard AES with 128 bit keys. To achieve this level for ECC suffice 256 bit
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keys, while RSA requires 3072 bit. Although RSA currently is more widespread used than ECC,
more and more applications take advantage of ECC. For example a large share of the smart cards,
calledBürgerkarte[buergerkarte] used in the Austrian e-Government system, make use of ECC in
192 bit NIST prime fields.

In this paper a multi-core ECC processor architecture for prime fields is proposed, which fits
into a mid-range FPGA (Spartan 3 1500) on a PCI board and thus serves for acceleration of ECC
operations on server side systems. Simulation and first synthesis results advise that this system can
process nearly about 1800 ECC operations per second on a 192 bit NIST prime field. As far as known
to the author it is the fastest ECC processor for FPGAs for prime fields. If a Xilinx Virtex 4 LX200 is
used, estimates indicate that more than 10000 ECC operations/second can be performed.

In section2 a summary of other server-side ECC processors is given.Section3 on the next
page gives an overview about elliptic curve cryptography in general. In Section5 on page6 our
hardware architecture is presented. Finally Section7 on page9 gives preliminary results of simula-
tion and expected hardware performance in comparison with other ECC processors.

2 Related work

While there are many server side acceleration processors for RSA, there are much less for ECC.
Most of these focus on elliptic curves defined over binary extension fields (GF (2m)), because these
are computational easier and so a higher performance is achievable as when prime fieldsGF (p) are
used. See Section4 on page5 what difficulties arise whenGF (p)-fields are used. However, when in
an application prime field support is needed, for example in the Austrian e-Government system, these
advantage can’t be used and the hardware must supportGF (p) fields. An ECC processor forGF (2m)
is presented inWolkerstorfer[2004]. The processor presented in this paper is based on this one, and
therefore the basic architecture is similar. However, the support forGF (p) fields complicates the
architecture considerable.

One of the fastest ECC-processors forGF (p) is presented inEberle et al.[2004]. It is a very pow-
erful processor, which can also perform calculations forGF (2m) and RSA. Using a 64 bit multiplier,
it achieves a very high performance, for example 6000 ECC-operations per second for aGF (p)-field
with 224 bit. However, these scores are for a hypothetical implementation in current processor tech-
nology at 1.5 GHz and it is very questionable whether it is feasible to use such powerful and therfore
expensive technologies for a cryptographic processor. They also implemented a prototype using a
Xilinx Virtex 2 V6000 FPGA running at 66 MHz. Unfortunately no benchmarks are given for this
implementation. Assuming that it could run at 100 MHz it would be about 15 times slower than the
standard cell implementation. Therefore it can be estimated that even for the smallerGF (p)-192 bit
fields less than 1000 ECC-operations can be performed per second.

Satoh and Takano[2003] present an ASIC elliptic curve processor which supports bothGF (2m)
andGF (p)-fields with arbitrary primes and reduction polynomials. The high-speed implementation
uses a 64x64-bit multiplier running at a clock rate of 137.7 MHz. It takes 1.44 ms for a point multi-
plication over a 192 bit prime field. This corresponds to nearly 700 point multiplications per second.

In Crowe et al.[2005] an arithmetic unit is proposed which can handle both RSA and ECC over
GF(p). To handle the high difference of typically used field sizes multiple arithmetic units are used,
which are pipelined for RSA operations and work in parallel for ECC operations. The architecture
uses carry propagate adders, which can be a reason for the relative low clock frequency obtained
on the target Xilinx XC2v2000 FPGA of less than 50MHz for 256 bit prime fields. A 256 bit field
multiplication takes5.75 us. Estimating the performance for point multiplication cannot be done
easily as the multipliers operate in parallel and so performance would depend very much on how well
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the point multiplication can be parallelized.

Orlando and Paar[2001] present a processor forGF (p) which has a quite unique architecture
using Montgomery multiplication with booth encoding and pre-computation. A prototype was imple-
mented in a Xilinx XCV1000E FPGA and. It uses about 11416 LUTs and due to the pre-computation
about 5700 flipflops and 35 block RAMs. It can be clocked at 40 MHz. Only a raw estimate for the
performance is given, which is3ms per point multiplications, which corresponds to about 330 point
multiplications/second.

Örs et al.[2005] uses montgomery multiplication using a systolic array multiplier. Implemented
in a Xilinx Virtex E-1000 6000 slices are occupied, and a maximum clock frequency of over 90 MHz
is possible. 160 bit point multiplication time is 14.14 ms, which corresponds to 70 point multiplica-
tions per second.

3 Mathematical fundamentals

3.1 Elliptic curve cryptography

The use of elliptic curves for cryptographic systems was independently proposed byKoblitz [1987]
and byMiller [1986]. Later a couple of cryptographic protocols were defined. Among the most
important ones is theElliptic Curve Digital Signature Algorithm (ECDSA)which was standardized
by various standardization organizations. It is a public key signature scheme, that can be used to sign
digital documents with the private key of the signer, while everybody can verify the authenticity of the
document by using the public key of the signer. ECDSA plays a key role in the target applications of
this work, therefore the hardware was designed with principally this algorithm in mind. However, the
base operation of ECDSA, thepoint multiplication (kP ) is also the base operation in all other elliptic
curve cryptography protocols, for example in the encryption schemeProvably Secure Encryption
Curve scheme (PSEC). Therefore support for these can be easily added with changes in the software
only.

The security of elliptic curve cryptography is based on the difficulty to solve theElliptic Curve
Discrete Logarithm Problem (ECDLP), which is to calculatel in the equationQ = lP . Q andP are
points on the elliptic curveE over the finite fieldFq. The operation inlP is calledpoint multiplication.
No algorithms with sub-exponential run time are known to solve the ECDLP. When sufficiently large
fields are used it is infeasible to solve the ECDLP and so elliptic curve cryptography can be assumed
to be secure.

The calculation of the point multiplication over the curveE(Fq) involves calculation in two dif-
ferent domains: Elliptic curve arithmetic operations, and the arithmetic operations in the underlying
field.

3.2 Elliptic curve arithmetic

The basic algorithm to calculate the point multiplication,kP , is thedouble and add algorithm. It
works analog to the integer exponentiation algorithm. The scalark is bitwise scanned, and depending
on whether the current bit is set, the base pointP is only doubled, or doubled and added to the
intermediate result. Ask is chosen randomly, on averagem point doublings andm/2 point additions
are required to calculate the point multiplication, wherem is the number of bits ofk.

Various optimizations can be performed to reduce the number of elliptic curve operations per-
formed in the point multiplication. Frequently used arewindow methods, which pre-calculate a cer-
tain number of point-multiples. This is in particular efficient as the base point for many elliptic curve
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algorithms is constant. However, for hardware implementations window methods are less appropri-
ate as the use a lot of memory, which is costly in hardware, in particular in standard cell designs.
Additionally, control is complicated.

Another approach, which can also be combined with the window methods, is to convert the scalar
k in a special form, which has less bits set, and therefore reduces the number of elliptic curve point
additions. Widely used is thenon-adjacent form (NAF). Here a bit ofk can also be negative, which
allows reducing the number of set bits to aboutm/3. Using negative numbers is possible, as the point
subtraction is as efficient as point addition. The overall performance gain of this measure is not very
impressive. However the hardware architecture required for the simultaneous point multiplication,
presented in the next chapter, can be reused, and therefore despite of this it makes sense to use NAF
for our processor architecture.

The simultaneous point multiplicationis a special optimization for ECDSA. In the verification
step its necessary to calculate the sum of two point multiplications (kP + rQ). As the point multipli-
cation is the dominating factor in the ECDSA this leads to a nearly doubling of the calculation time
for the verification in comparison to the time required for the signing. To avoid this an algorithm can
be used which can do both point multiplications and the addition simultaneously. For this a single
pre-calculation ofP + Q is required. The main loop of the algorithm is changed, so that it evaluates
both scalar numbersk, r. When only one current bit of eitherk or r is set, the corresponding point is
added, when both are set, the pre-calculated pointP + Q is added. Trading a slightly more compli-
cated control and memory for the two additional saved points, that isQ andP + Q, the runtime is
reduced by far. The number of doublings is halved and the number of adds is reduced by one fourth
in comparison to calculating both multiplications separately and adding the intermediate results. As
already mentioned another advantage is that the hardware for the simultaneous point multiplication
can be reused for supporting scalar in NAF whenkP has to be calculated in the signing algorithm.

For elliptic curves over binary extension fieldsGF (2m) the Montgomery-methodis a more ef-
ficient algorithm to calculate the point multiplication. However, for prime fieldsGF (p) it is less
efficient than the double and add algorithm. Another advantage of the Montgomery method is that
in every step both a point addition as a point doubling is performed. This gives a certain protection
againstside channel attacks, which use timing or power analysis to get information about the secret
scalark. However, in this work the security of the hardware must only be equal to the security of a
pure software system, as in FPGA-technology a secure storage of the private key is not possible. For
verification no additional measures are necessary because there is no secret involved. For signing only
protection against timing attacks is required because direct access to the hardware which is required
for power analysis would allow retrieving the secret key from the FPGA and also the server directly.
The protection against timing analysis can be done by adding additional wait cycles in the driver or
the ECDSA software.

As already mentioned for the point multiplicationpoint additionandpoint doublingis used. Both
use a series of operations in the underlying finite field, which are, if the points are given in affine
coordinates, multiplications, additions/subtractions and one inversion. As the inversion is a very
expensive operation, reducing the number of inversions is very useful. This can be done by using
projective coordinates. Here an additional point coordinate is added. At the cost of using about
four times more multiplications it reduces the number of inversions to only one, which is performed
after the complete point multiplication and converts the result in projective coordinates back to affine
coordinates. In this work Jacobean-projective coordinates are used. This allows the point addition of
a point in affine coordinates to a point in Jacobean-projective coordinates, thus no conversion of the
pointP to projective coordinates is required. The overall performance is very dependent on the speed
of operations in the underlying field, which are discussed in the next section.
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3.3 Finite field arithmetic

For the finite field over that the elliptic curve is defined two types of fields are widely used:Binary
extension fieldsGF (2m) andprime fieldsGF (p). For a discussion of advantages of each one see
section4. In the following only prime fields are discussed.

A prime fieldGF (p) is a finite field withp elements.p must be a prime, otherwise the elements
only define a group instead of a field. The field operations addition, subtraction, multiplication and
inversion are performed modulo this primep. Therefore a reduction has to be performed after each
modular operation, or so that the result always is smaller than an upper bound, which is here defined
by the hardware size. Generally, the reduction is a costly operation because a division is needed to
estimate the reduced result. To simplify the reduction two approaches are widely used:Montgomery-
multiplicationandreduction for special primes.

The first one is the Montgomery-multiplication [Montgomery, 1985]. It trades an additional trans-
formation step, for replacing the trial division with a very easy one, usually a division by a power of
two, which can be performed as a simple right shift. As in the point multiplication many consecutive
field multiplications are performed, the time for transformation and the back-transformation, both are
themselves a Montgomery multiplications, is negligible, and the performance improvement is high.

The second approach waives the support for arbitrary primes and only supports reduction for
some specific primes, for example the NIST primes are recommended in FIPS 186-2 standard. This
is possible as the cryptographic protocols usually only use these primes. Therefore reduction for ar-
bitrary primes is not required. These primes are selected in a way that allows very efficient reduction.
Instead of a trial division only a few additions and subtractions are needed, for example in a 192 bit
GF (p) field to perform the reduction only three 192 bit additions are required. In comparison to the
Montgomery multiplication, the hardware size is significantly reduced, because only one radix mul-
tiplier is required instead of two. As this multiplier is the dominant part of the whole architecture, the
hardware size is reduced significantly, which allows the use of either higher radices or using multiple
cores, and so highly improves the overall performance.

The field inversion can be implemented with theextended Euclidean algorithmor by using the
theorem of Fermat. The first method is faster but requires extra hardware, while the second approach
can reuse the multiplier for calculatinga−1 = a2p−2 (mod p). This exponentiation takes about2p
multiplications, withm the length of the modulusp. That is because the primes commonly used do
have nearly all bits set. In this work the second approach was chosen.

4 Comparison of GF (2m) and GF (p) fields

This sections gives an overview of the difficulties that arise whenGF (p) fields are used instead of
GF (2m) fields.

GF (2m) fields have the advantageous property that the field addition is just thexor-operation.
Thus each bit of the result can be calculated independently from other bits of the input number. This
means that no carry propagation occurs. InGF (p) fields this is not the case. Here the carry may
propagate from the least significant bit up to the most significant bit of the result. As the numbers
used in cryptography typically are very large, this carry propagation would lead to a very long critical
path in the hardware design, and would result in very low maximal clock frequencies. To cope with
this usuallyCarry Save Adders (CSA)are used. These calculate the sum and the carry of three input
numbers separately. The three inputs can be for example one number in redundant representation,
and another number in binary representation. A tree structure must be used when more than three
numbers are added. This, together with the additional register used for saving the carry result, leads
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to a substantial larger hardware than whenGF (2m) fields are used. This in particular occurs for
high multiplication radices as in the radix multiplier for each additional bit in the radix an additional
partial product must be added in the adder tree. When the binary result is needed, this is for example
the case when the result of some sequential field operations must be saved in memory, or when the
result is needed as an operand for a multiplication, the redundant result must be converted to its binary
value by adding them together. This can either be done by a separate adder or by reusing the CSA-
adder multiple times. As the first approach requires a large additional hardware, the second approach
was used in this architecture. The drawback is that additional cycles are required for calculation.
On averageld(bits) cycles are used for converting the result. This time does not depend on the
multiplication radix. Therefore the strategy to use higher radices for receiving more performance is
inapplicable because the time for the conversion becomes soon the dominant factor. To cope with this
two approaches were used. The first one is two use multiple cores instead of using very high radices.
The second one is two use a mixture between CSAs and normal adders in the feedback path, where
the width of the conventional adders depends on the radix of the multiplier, so that both paths are
balanced. This reduces the conversion time for higher multiplication radices, and therefore makes it
feasible to use them. See section5.1for details.

Another advantage ofGF (2m) fields is that squaring is much simpler than the multiplication
of two different numbers, actually it can be done in a single cycle. For a ECC-point-multiplication
over an 191 bitGF (2m)-field about 2000 field multiplications and about 1300 field squarings are
performed. The time required for a multiplication is about191/radix, for example24 cycles for
radix 8. Obviously the possibility to calculate the squaring in one cycle saves a lot calculation time,
while in GF (p) fields the squaring is not different to a multiplication.

The third and least important advantage is, that the subtraction operation is the same as the ad-
dition operation inGF (2m) fields. This implies that no negative numbers exist. This simplifies the
hardware as no sign extension is required. To avoid sign extension, which is in particular unpleasant
in the reduction circuit forGF (p) fields a special negation is used which always adds a certain mul-
tiple of the primep to the result. This assures that neither the sum nor the carry part of the result is
negative. See section5 for details.

5 Hardware architecture

Figure2 on the following page shows the architecture of the elliptic curve processor core. As for
server applications throughput is the most important benchmark, multiple cores can be used to im-
prove overall performance. The main part of each core is theALU which performs the finite field
operations. The main task of thecontrol unit is to carry out the point multiplication, and it performs
also the elliptic curve operations. Theregfileis the memory for the operands and intermediate results,
but also supports the bus-io-transfers, by supplying, additionally to the full word length, 32-bit-IO-
ports with bank select. To reduce area requirements this circuit is reused for retrieving of the current
bit of the scalarsk andl. For this task additionally a 32-1 multiplexor is used.

5.1 ALU

The ALU (see figure1 on the next page) operates on the full length word for one operand of the
multiplication and for all other operations. The second multiplication operand is processed on a per
digit basis with a parameterizable radix size, which can be between 1 bit and 32 bits for 192 bit
prime fields. The maximum radix is limited by the reduction unit, which can easily extended to
support larger numbers. However, simulation results show that for high radices the redundant-binary-
conversion is dominating, and therefore using higher radices is little beneficial.
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Figure 1: Elliptic curve processor ALU
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Figure 2: Elliptic curve processor architecture
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The ALU consists of two paths: The radix multiplier and the feedback loop, which besides the
shifting for the multiplication, also performs the other finite field operations, and includes the reduc-
tion functionality. The results of both paths - four values because both radix multiplier and feedback
loop use numbers in carry save representation - are summed up with two carry save adders and saved
in two registers. Locating the reduction unit in the feedback loop does have the drawback that an
additional clock cycle is required to calculate the reduced result. However, it has the advantage that
critical path is shorter and that the pathes are well balanced. This allows the use of hybrids of CSA
and carry propagation adders, where the width of the carry propagation adders is varied with the radix
of the radix multiplier, such that both critical pathes stay balanced. The benefit is that the carry-save-
redundant-conversion takes less cycles when higher radices are used, which improves the scalability
of the architecture for higer radices.

The radix multiplier is based on the one presented inWöckinger[2005]. The results of partial
product generators are added up by aWallace-treeusing carry save adders. This structure is optimized
for a minimum propagation delay. However, it has the drawback that the structure is highly irregular,
which leads to complicated routing. Particular for FPGA-Implementations it is probable that using a
structure which has a higher delay but is more regular, for example a carry save adder array, performs
better.

Thereduction unitreduces the intermediate result by using the equations for reduction with NIST
primes recommended by the FIPS 186-2 standard. A simplified version of the equations was used
which only support inputs up tofield − size + k instead offield − size ∗ 2 with k = 64 for the
192 bit-prime field. This saves adder/subtracter steps on the cost of limiting the maximum radix for
the multiplier. While the reduction with the 192 bit NIST prime only uses additions, for larger NIST-
prime-fields also subtractions are required. To avoid signed numbers the same strategy is used as in
the negation unit. A multiple of the NIST prime is added, which is definitely larger than the possible
most negative result. This ensures that both the carry and the sum part of the reduction result are
always positive. As a drawback the reduction result can now be larger, for example one bit for 256 bit
fields, which requires that the hardware width must be enlarged by this single bit, and the final result
of the complete point multiplication has to be fully reduced, which is only an integer subtracting of the
NIST-prime. To support in an arithmetic unit not only a single field, but also all smaller NIST-prime
fields, a multiplexor can be added easily to allow switching the reduction unit for different fields.

The negation unitis used for the subtract operation. It calculates the two’s complement of the
intermediate result, and adds a multiply of the reduction modulos to ensure that both the carry and the
sum result after the inversion are always positive. This is required because sign extension, which is re-
quired for negative numbers, would complicate the hardware, and is incompatible with the redundant-
binary-conversion because of the reduction unit is in the loop-back path.

6 Implementation

The target platform for the processor is a Xilinx Spartan 3-1500 PCI Board [AVNET]. The board does
not provide a PCI bridge, so the Opencores PCI bridge core is used [Opencores.org]. The multiple
elliptic curve processor cores are connected over a wishbone bus with the PCI bridge (see figure2 on
the preceding page). The cores can be parameterized for different field sizes, which is an alternative
for supporting different field sizes by the ECC processor itself. The driver for the card is implemented
in Linux, and is doing the scheduling for the multiple cores. This approach keeps the hardware small,
and should only cause negligible performance losses, because despite the high performance of the
elliptic curve cores, the absolute number of point multiplications performed per second is still very
low. The Java Elliptic Curve Cryptography Library [IAIK ] was extended to use the hardware for
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Reference GF (p)-field Multiplier Target Area Freq. Cycles kP/s
architecture (MHz) perkP

This work NIST-192 two 192x8 Spartan3-
1500

12000
Slices

100 1124001 1779

This work NIST-192 five 192x322 Virtex4-
LX200

70000
Slices

100 491501 10100

Satoh and Takano 192 64x64 0.13um
ASIC

118000
Gates

137.7 198288 694

Eberle et al. 224 64x64 ASIC3 ? 1500 245330 6114
Eberle et al. 224 64x64 Virtex2-

6000
? 66 245330 2704

Örs et al. 160 systolic array VirtexE-
1000

6055
Slices

91.3 1316160 69.3

Table 1: Comparison ECC-GF (p)-processors

computing elliptic curve operations over finite fields supported. This allows that application using
the library can transparently use the hardware accelerator. As test application amongst others an
implementation of the ECDSA algorithm is used.

7 Results and Conclusion

The project is currently in an advanced stage. More precisely the ALU was fully implemented in
VHDL and tested in simulation, the control is largely finished. The performance estimates are based
on the results of a cycle-accurate high level language model of the processor, whose results were
verified with VHDL-simulation results. Synthesis runs were performed to retrieve estimations of the
timing and area requirements of the processor. Therefore the estimates are expected to be sufficiently
accurate. The main factor of uncertainty is how many instances of the processor finally will fit into
the FPGA. Table1 shows that the processor performs very well in comparison with other implemen-
tations. It is s much faster than the reported FPGA results and competes very well with the ASIC
implementations. This is achieved by the restriction of only supporting the essential fields. Most
other implementations focus on supporting arbitrary fields, which can be useful when they are used
for small client devices. However, for server applications, which are targeted in this work, the benefit
is arguable because usually virtually all ECC-operations to perform will be over NIST-prime-fields.
Thus the few others can be performed by the main processor. The performance loss for this can be
safely expected to be much less than the performance loss of the hardware caused by the requirement
to support arbitrary prime fields. However, dual field support, that is supportingGF (p) andGF (2m)
fields, could be - depending on the application - a useful extension of the ECC-processor, because
this requires only little additional area.

1Effect of carry-save-carry-propagate hybrid adders (see5.1) is not considered. In particular for the 32 radix size a
better actual performance can be expected

2Max. core number limited to five by PCI-bridge implementation. Actually using smaller radices and more cores would
be more efficient. (for example 14000kP/s for ten 16-bit radix cores)

3Current processor technology which allows 1.5GHz when architecture is fully pipelined
4Author’s estimate based on reference
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