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Abstract

Until the availability of Kernel 2.6 the Linux op-
erating system lacked general support to integrate
security mechanisms into the kernel. The Linux Se-
curity Module Framework (LSM) was designed to
overcome this limitation. Although LSM provides
a solid baseline for kernel security, it lacks impor-
tant features. In this paper two of these limitations
are addressed: First a framework-managed module
stacking mechanism is proposed that allows multi-
ple security policies to be present in the kernel at
the same time. The second aspect this paper deals
with is the addition of LSM hooks to the Linux TCP
layer. This extension was chosen because it allows
the implementation of a State-Based Network In-
trusion Detection Mechanism which is outlined at
the end of the article.
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Module Stacking, TCP LSM Hooks, State-Driven
Intrusion Detection

1 Introduction

Along with many other new features Linux Ker-
nel 2.6 introduced the Linuz Security Modules
(LSM) [1,2, 10] mechanism that provides general
security support for the kernel. Although LSM pro-
vides a universal and flexible security framework it
nevertheless lacks some features. Among those is a
framework-managed and enforced module stacking
mechanism that allows multiple security modules to
be loaded into the kernel without relying on module
cooperation. The second aspect that is addressed
in this paper is the addition of security hooks to
the Linux TCP layer. These hooks allow tracking
of state transitions to implement a state-driven net-
work intrusion detection system as proposed in [3].

The remainder of this paper is organized as follows.
Section 2 provides a brief overview of the concepts
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of the existing Linuz Security Modules framework
along with an outline of its implementation. Sec-
tion 3 describes the principles and architecture of
the proposed module stacking extension and gives a
summary of the implementation. Another enhance-
ment of LSM is described in Section 4: The addition
of security hooks to the TCP layer to track TCP
state transitions. The subsequent section 5 at first
describes the basic concepts of State-Based Network
Intrusion Detection Systems followed by a descrip-
tion of a possible implementation of such a system
based on the LSM TCP hooks from section 4. Sec-
tion 6 presents the current state along with possible
further extensions while section 7 gives a conclusion
of our work.

2 LSM: Goals, Concepts and
Implementation

LSM was designed as a general framework which
allows the integration of different security concepts
into the Linux Kernel. LSM by itself only provides a
number of security hooks located in different kernel
subsystems without implementing a security con-
cept itself. This is entirely left to the security mod-
ules. Among the best known of those modules is
Security Enhanced Linuz (SELinux) [4,5,6,7,8,10]
developed by NSA! .

LSM Architecture: The main goal of LSM is
managing the access to kernel objects. To achieve
this, calls to security hook functions were placed at
various points within the kernel to mediate access
to kernel objects. Function pointers for the hook
functions are stored in a global structure called
security_ops. Those function pointers are called
by the kernel. To provide great flexibility it is pos-
sible to load so-called security modules into the ker-
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nel. Those modules can provide and register func-
tions for the function pointers in the security_ops
table. It is not required that a module implements
all available hook functions, but it can limit itself
to any subset that is sufficient for its goals.

There are about 130 such security hooks available
in the kernel. The most important categories of
security hooks are:

Task Hooks: provide control over process related
functionality such as kill, setuid or nice

Program Loading Hooks: allow access control
prior to loading programs and add hook calls
at critical points of the execve function

IPC Hooks: allow access control for interprocess
communication

Filesystem Hooks: allow fine grained access
control for filesystem operations such as read
or write

Network Hooks: provide several hooks at differ-
ent points of the network stack

In addition to the security hooks the LSM frame-
work provides so-called security fields. Those are
simple void pointers which are attached to impor-
tant kernel data structures. This mechanism per-
mits security modules to add information to kernel
objects and thereby label them or attach security
relevant information to a specific object. There are
special alloc and free hooks that are called when-
ever a kernel object is created or destroyed to allow
the security module to initialize and clean up the
security fields.

In theory it is possible to load more than one se-
curity module into the kernel. This mechanism is
called module stacking. This functionality however
relies completely on the cooperation between mod-
ules. The LSM framework by no means enforces a
proper stacking. The first security module that is
loaded registers itself with the kernel. The follow-
ing modules then register themselves with the first
(primary) security module. This means that the
kernel itself is only aware of the primary security
module. It is up to the primary module to pass on
hook calls to subsequent modules. A module does
not have to implement this cooperative behavior or
can ignore security decisions of subsequent modules
which means that the primary module has ultimate
control.

3 Framework Managed Mod-
ule Stacking

As described in section 2 LSM currently lacks a
module stacking mechanism that provides and en-
forces correct module stacking. We propose an ex-
tension to the current LSM implementation to over-
come these limitations.

A mechanism is required that allows to register mul-
tiple security functions from different security mod-
ules for a single security hook. It should be the task
of the LSM framework to call all the registered func-
tions for a certain LSM hook. The next step is the
computation of the final result of all the access de-
cisions (grant access or not) which then is returned
to the calling kernel function. The security modules
themselves should not need to be aware of the fact
that there are multiple modules loaded into the ker-
nel, otherwise existing modules would require mod-
ifications to fit the new stacking mechanism which
is not desired.

The current LSM framework maintains a global
data structure called security_ops where func-
tion pointers to the security functions of the
loaded primary security module are held. A se-
curity module registers its functions by using the
register_security function of the kernel. The
kernel framework is only aware of the first loaded
module, which is also called the primary mod-
ule. Subsequent modules that are loaded into the
kernel have to use the mod_reg security func-
tion to register themselves. This function calls
security_ops->register_security which essen-
tially is a LSM hook function. The primary LSM
module might or might not have registered a func-
tion for this hook. And even if it has, this still
will not guarantee that subsequent security mod-
ules are handled correctly by the primary module.
There is no enforcement that hook functions of sub-
sequent modules get called or their access decisions
are taken into account.

The proposed approach to implement correct mod-
ule stacking is to introduce a special LSM multi-
plexing module which is loaded as primary secu-
rity module. Subsequent modules register with the
multiplexor module which guarantees that all secu-
rity function calls from the kernel are passed to all
loaded security modules. This concept is shown in
Figure 1.

3.1 Implementation

Considerations for the implementation of the mul-
tiplexor module can be separated into two parts:
Firstly every module has to be consulted for every
security hook call that occurs. Secondly every func-
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Figure 1: The multiplexor passes access deci-
sion requests to all loaded modules, computes
the result and returns it to the calling kernel
function.

tion has to be able to store data in the void pointer
security field of the related kernel object. The sec-
ond constraint requires the multiplexor module to
restore the correct state of the security field of a
security module ahead of a security function call.
After the call the multiplexor has to save the con-
tent of the security field. Since the current LSM
implementation only provides simple void pointers
for the security field, a more flexible data structure
is required.

3.1.1 Multiple Modules and Hook Calls

The multiplexor module has to be loaded as pri-
mary security module. It then registers spe-
cial functions for the register_security and
the unregister_security hooks in the global
security_ops table of the kernel. For any sub-
sequent security module that tries to register it-
self with the kernel, the register_security func-
tion will fail since there has already been a pri-
mary module loaded. As the next step the mod-
ule tries to register with the kernel using the
mod_reg _security. This function actually calls
the security_ops->register_security function
pointer. This enables the multiplexor module to
build up a list of all loaded security modules along
with the security functions they provide.

The LSM multiplexor provides security functions
for all the security hooks currently available in
the kernel which get registered in the global
security_ops table. Whenever the kernel asks the
LSM framework for an access decision, the match-
ing multiplexor security function gets called. This
function then calls its counterparts from all regis-

tered modules. The access decisions of those calls
are aggregated into a single value which is returned
to the calling kernel function. Since the return val-
ues are sensitive in terms of granting access to cer-
tain kernel regions or objects the mutliplexor only
will grant access if all the security modules grant
access. Otherwise access will be denied by the mul-
tiplexor.

3.1.2 Saving and Restoring Fields

The LSM framework introduced security fields
which are attached to certain kernel data structures.
Those fields are used to store security-related infor-
mation in kernel objects. With multiple modules
in the kernel a mechanism is required that manages
access to the security fields of kernel objects.

To allow more than one security module the single
void pointer that is provided by the current LSM
in certain kernel structures is replaced by an ar-
ray of void pointers. This replacement is handled
transparently by the multiplexor. Before a certain
security function of a module is called the multi-
plexor saves the array of void pointers and sets the
kernel object security field to the correct entry for
the module. After the call returns, the multiplexor
writes the values of the security field back into the
array.

For both, the handling of the loaded security mod-
ules and the handling of the multiple security fields
of kernel-objects, arrays were chosen as data struc-
tures. To quickly access array elements every secu-
rity module is assigned a unique identification num-
ber. Those numbers are maintained in a bitmap.

3.2 Discussion

The LSM multiplexor module described in the pre-
ceding sections offers a simple and elegant way to
extend the LSM framework as currently available
in the Linux 2.6 kernel series by a mechanism that
guarantees and enforces correct module stacking
without relying on module cooperation. In addi-
tion, this approach avoids grave changes to the ex-
isting LSM implementation and therefore doesn’t
require modifications of existing security modules.

By implementing the multiplexor as a module great
flexibility is achieved. Users are able to load the
multiplexor when required but can fall back to the
default LSM behavior whenever they are employing
only a single security module. This also eliminates
any performance impact of the multiplexor due to
additional indirections for ”single module setups”.
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Although the LSM consists of about 130 hooks
placed in all parts of the kernel, there are no hooks
in the TCP layer. To implement an intrusion de-
tection system based on changes of TCP states it
is required to insert hooks in this part of the kernel
as well.

The integration of the TCP hook function into the
LSM framework as well as the additional hook calls
to this function from within the TCP layer should
be done with minimum impact to the existing code.

4.1 Extending the LSM Framework

As described in section 2 the global structure
security_ops (defined in include/linux/security.h)
stores pointers to all security hooks available. When
introducing a new security hook, the security_ops
structure has to be extended to hold the additional
function pointer.

These function pointers in the security_ops struc-
ture are not accessed directly but by means of inline
functions which are defined in include/linuz/secu-
rity.h as well. Such an inline function has to be
provided for the newly introduced TCP hook func-
tion.

In a first version only one hook function has been
introduced to keep track of the changes in the TCP
layer. The parameters for this security function are
a pointer to the socket which changed its state, the
old state and the new state. This information is
sufficient to keep track of the state transitions in
the TCP-Layer. This single hook function is called
from various places within the TCP layer.

4.2 Placing the Hooks

Besides extending the LSM-Framework it is re-
quired to insert the calls to the new hook functions
into the TCP layer. The goal was to keep these
changes as little intervening as possible. Although
the Linux Kernel supports not only IPv4 but also
IPv6 the following approach focuses on IPv4 to de-
scribe the basic principles.

When taking a closer look on the TCP layer, there
are two main entrance functions. Incoming pack-
ets from the IP layer enter the TCP layer through
the function tcp_v4_rcv. Packets for already es-
tablished connections get processed by the func-
tion tcp_rcv_established while all other packets
are passed on to tcp_rcv_state _process. This
function takes into account the current TCP state
of the connection and carries out the required ac-

tions. If this leads to changes in the current TCP-
State the function tcp_set_state (defined in in-
clude/net/tcp.h) is called. Therefore this function
turns out to be an ideal location to call the TCP
security hook.

Placing the call of the TCP security hook in the
tcp-_set_state function covers almost any state
transitions in the TCP layer (see [9]). One excep-
tion is the transition from the state LISTEN to the
state SYN RECFEIVED. This transition is special
because upon receiving a SYN-Packet on a socket
which is in state LISTEN this socket remains in
state LISTEN and a new socket which is in the state
SYN RECEIVED is created. To track this state
transition too it is necessary to insert one more call
of the hook in the function tcp_v4_syn recv_sock
(defined in net/ipv4/tep-ipv4.c).

Another exception is the transition from state
CLOSE to state LISTEN. This transition is invoked
from the userspace by the systemcall sys_listen. In
the case of a TCP socket the systemcall passes the
request to the function tcp_listen_start which in
turn changes the state to LISTEN. By inserting
the TCP security hook in the tcp_listen_start
function (defined in net/ipv4/tep.c) it is possible to
track this state transition.

By calling the TCP security hook within the func-
tions described above it is possible to track all
state transitions within the TCP-Layer. However,
it might be necessary to insert additional hook calls
to cover all invalid state transitions (e.g. the socket
remains in the current state when receiving invalid
TCP packets).

5 State-Driven NIDS based on
LSM TCP Hooks

The additional LSM TCP hooks described in sec-
tion 4 provide the necessary facilities to imple-
ment a Network Intrusion Detection System (NIDS)
based on TCP state transitions. A similar approach
was outlined in [3]. In contrast, the current pro-
posal focuses on a concrete implementation for the
Linux Kernel on top of the LSM framework.

Before the actual implementation is described some
more general considerations about NIDS systems
based on state transitions will be presented.

5.1 State-Transition based NIDS:
The Concepts

The TCP protocol is implemented as a state ma-
chine with well defined state transitions [9]. Many
attacks try to exploit this behavior by perform-



ing invalid or incomplete sequences and therefore
leaving the TCP stack in an undefined state. For
common intrusion detection systems located in the
userspace it is not possible to detect such attacks
since there is no information available about those
events outside the kernel.

For example, it is easy to detect a portscan with
a state-transition based intrusion detection sys-
tem. Portscans are characterized by a lot of incom-
ing connections on different ports which are closed
again instantly. They are used by intruders to get
information about open ports and the correspond-
ing services of their point of attack. When trying to
detect a portscan with an intrusion detection sys-
tem based on packet inspection it is necessary to
trace the connection establishment and termination
on IP-layer level. This means that the intrusion
detection system has to keep track of at least six
IP-packets corresponding to the connection estab-
lishment and termination.

Using a state-transition based intrusion detection
system it is only required to keep track of the tran-
sitions of the opened ports. The intrusion detec-
tion system counts the number of sockets changing
their state from LISTEN through ESTABLISHED
to CLOSED. If the gradient of this value exceeds
a given threshold the reason can be a portscan.
Variants of the attacks are so-called stealth-scanner
where the actual establishment of the connection is
not concluded. Of course it is also possible to take
only a few ports into account or offer some addi-
tional honeyports with no real services behind.

By keeping the approach as lightweight as possible
it should be feasible to deploy the NIDS infrastruc-
ture on a whole network without the risk of a signif-
icant performance impact for single machines. This
allows the implementation of a distributed network
of sensors. This is especially interesting for switched
networks where there is no single point that sees all
the traffic. Even if this would be possible there is
still the problem that this single monitoring point
requires lots of computing power to analyze and
process all the network traffic.

What we propose is the deployment of the
lightweight state based NIDS module onto all ma-
chines of the network. While those NIDS modules
are running in kernel mode to be able to monitor
all the traffic rules and thresholds can be easily set
from userspace by employing the Netlink [11] func-
tionality of the Linux Kernel. Since it is not desir-
able that every single sensor has to be manually con-
figured we propose a central point of control. This
master station provides rule sets along with other
configuration parameters such as thresholds for all
the sensor stations. The sensor stations obtain this
information via network communication from the
central master station and configure themselves ac-

cording to those rules. An overview of the setup is
depicted in Figure 2
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Figure 2: The NIDS modules is deployed on
all machines of the network. A central master
station provides rules and acts upon observa-
tion results from the sensor stations.

Aside from providing the rules the master station
also acts as a central decision maker. All sensor
stations report detected attacks to the master sta-
tion. Then, it can decide how to react on the at-
tack. This could reach from a reconfiguration of
the other sensor stations by providing updated rule
sets to changing the configuration of firewall sys-
tems running on certain gateway machines to block
incoming traffic from suspicious hosts.

5.2 Implementation: LSM Module

After describing the advantages of intrusion detec-
tion systems based on the state transitions in the
TCP layer we introduce two kernel modules. These
modules register themselves with the LSM frame-
work and provide functions for the TCP security
hooks described in section 4.

The first module introduced implements logging fa-
cilities for state transitions while the latter imple-
ments a portscan detection. Using the LSM multi-
plexor module described in section 3 both modules
can be loaded simultaneously.

Both modules consist of two main parts. While
the first part implements the logging facility respec-



tively portscan detection mechanism, the second
part handles the communication with the userspace.
The principal task of each module is described in
the following two sections, while the communica-
tion mechanism is described in section 5.3.

5.2.1 Logging TCP state transitions

The fist module is rather simple. Its only intention
is to log each TCP state transition of a socket. As
a side effect this module can be used to check if all
state transitions are reported correctly by the new
security hooks. Therefore the module has to reg-
ister itself as security module and provide an ap-
propriate implementation of the security function
for the TCP hook. All other security hooks can be
ignored.

As counter for the transitions from state A to state
B a two dimensional array where the first index
is the old state and the second index is the new
state is employed. Because the number of states in
the TCP layer is fixed the array can be statically
allocated at compile time.

Furthermore, a userspace tool was implemented to
interact with the kernel module. With this tool it
is possible to read the current values stored in the
array or reset all values to zero from userspace.

5.2.2 Detecting portscans

The original idea of introducing new security hooks
was to provide a lightweight mechanism for de-
tecting network intrusions. This module follows
this intention and presents a mechanism to detect
portscans only by observing state transitions in the
TCP Layer.

As described earlier, portscans are characterized
by lots of incoming connections on different ports
which are closed instantaneously. This connec-
tion establishment and termination leads to a quick
transition from LISTEN through ESTABLISHED
to CLOSED.

By measuring the time between the transitions from
LISTEN to SYN RECEIVED and TIME WAIT or
LAST ACK to CLOSED it is possible to detect all
connections which are opened and closed ” quickly”.
Therefore, the security field of the socket structure
is used to store the timestamp when a transition
from CLOSED to SYN RECEIVED occurs. When
the socket is closed the stored timestamp is com-
pared to the current time and if the difference is
below a given threshold this connection could be
considered as part of a portscan. If the number of
short connections reaches a second threshold value,
an intruder may be looking for open ports.

Another userspace utility was introduced for com-
munication with this LSM module as well. On the
one hand this tool can be used to configure the
thresholds and on the other hand to get informed
about possible portscans. In reaction to that special
events (e.g. inform some system/network monitor-
ing programs) could be triggered.

5.3 Implementation: Communica-

tion with Userspace

While the core parts of the NIDS are implemented
in the kernel it is required that the configuration of
the modules can be modified and the current data
collected by the module can be read from userspace.
There are many ways to achieve a communication
between kernel modules and userspace tools.

The first approach might be using systemcalls to
pass data between the userspace and kernelspace.
But implementing this communication mechanism
for a kernel module would require a lot of changes
to the whole kernel. Systemecalls are very dependent
upon the architecture and therefore not suitable for
our communication needs.

A more flexible way to exchange data between ker-
nelspace and userspace are the so called netlink
sockets [11]. This framework is already part of the
kernel and can be used by kernel modules with-
out any needs of changes to the kernel itself. It
also defines the basic packet-structure and contains
all mechanisms to exchange data between the ker-
nelspace and userspace. Therefore we decided to
use this communication mechanism.

The kernel module has to register itself with the
netlink framework to be able to receive data from
the userspace. The connection endpoint is the
kernel-side counterpart of a user-socket. Sending
data to the userspace is like writing to the socket.
Receiving data is a bit more complicated. The ker-
nel module receives a sk_buff structure [10] and
has to divide it into the individual netlink packets.

From the point of view of the userspace the commu-
nication is a socket communication with datagrams
(connectionless). After opening a new socket with
a specific protocol type the application can write to
and read from this socket as usual.

6 Current State and Further
Work

Currently the LSM Enhancments described in pre-
vious sections are freely available as ”proof of
concept” implementations from http://uni.quws.
net/linpro/project. While at the moment only
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portscans are detected the flexibility of the frame-
work allows an easy extension to detect a whole
class of attacks.

Building upon the proposed concepts there are sev-
eral topics that could be investigated further:

e An Implementation of the multiplexor as a
kernel patch. This could probably allow a
more efficient implementation and reduce per-
formance overhead but might break existing se-
curity modules along the way.

e For the detection of illegal state transitions ad-
ditional LSM hooks in the TCP layer might be
required.

e A deployment of attack-detection kernel mod-
ules on a whole network to act as a distributed
intrusion detection system could be of interest.

e For performance reasons it might be useful to
integrate the LSM multiplexor as a patch into
the kernel.

7 Conclusion

The LSM multiplexor presented in the first portion
of the paper provides a mechanism that allows mul-
tiple LSM modules to be present in the kernel at the
same time without relying on module-cooperation.
This property is especially valuable for NIDS mod-
ules presented in the second part of the paper.

The given example of portscan detection based on
the examination of TCP state transitions actually
stands for a whole class of network based attacks
that can be identified by state-driven NIDS systems.
Among those attacks are for example SYN-flooding,
FIN-stealth scans or the ”X-Mas tree” attack. By
using the LSM multiplexor and the new TCP LSM
hooks it is possible to write detection modules for
each of those attacks.
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